Browse > Article
http://dx.doi.org/10.14348/molcells.2014.2336

Quantitative Trait Locus Mapping and Candidate Gene Analysis for Plant Architecture Traits Using Whole Genome Re-Sequencing in Rice  

Lim, Jung-Hyun (Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute of Agriculture and Life Sciences, Seoul National University)
Yang, Hyun-Jung (Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute of Agriculture and Life Sciences, Seoul National University)
Jung, Ki-Hong (Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University)
Yoo, Soo-Cheul (Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute of Agriculture and Life Sciences, Seoul National University)
Paek, Nam-Chon (Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute of Agriculture and Life Sciences, Seoul National University)
Abstract
Plant breeders have focused on improving plant architecture as an effective means to increase crop yield. Here, we identify the main-effect quantitative trait loci (QTLs) for plant shape-related traits in rice (Oryza sativa) and find candidate genes by applying whole genome re-sequencing of two parental cultivars using next-generation sequencing. To identify QTLs influencing plant shape, we analyzed six traits: plant height, tiller number, panicle diameter, panicle length, flag leaf length, and flag leaf width. We performed QTL analysis with 178 $F_7$ recombinant inbred lines (RILs) from a cross of japonica rice line 'SNU-SG1' and indica rice line 'Milyang23'. Using 131 molecular markers, including 28 insertion/deletion markers, we identified 11 main- and 16 minor-effect QTLs for the six traits with a threshold LOD value > 2.8. Our sequence analysis identified fifty-four candidate genes for the main-effect QTLs. By further comparison of coding sequences and meta-expression profiles between japonica and indica rice varieties, we finally chose 15 strong candidate genes for the 11 main-effect QTLs. Our study shows that the whole-genome sequence data substantially enhanced the efficiency of polymorphic marker development for QTL fine-mapping and the identification of possible candidate genes. This yields useful genetic resources for breeding high-yielding rice cultivars with improved plant architecture.
Keywords
agronomic trait; plant shape; quantitative trait loci; rice; whole genome re-sequencing;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Hedden, P. (2003). The genes of the Green Revolution. Trends Genet. 19, 5-9.   DOI   ScienceOn
2 Huang, C., Jiang, S.K., Feng, L.L., Xu, Z.J., and Chen, W.F. (2010). Analysis of QTLs for mesocotyl length in rice (Oryza sativa L.). Acta Argon. Sin. 36, 1108-1113.   DOI
3 International Rice Genome Sequencing Project (2005). The mapbased sequence of the rice genome. Nature 436, 793-800.   DOI   ScienceOn
4 Ishimaru, K., Ono, K., and Kashiwagi, T. (2004). Identification of a new gene controlling plant height in rice using the candidategene strategy. Planta 218, 388-395.   DOI
5 Jiang, J.H., Liu, Q.M., Zhang, H., Liu, J., Lu, C., Ni, W.L., and Hong, D.L. (2012). Tiller morphogenesis and mortality were controlled by different loci in rice (Oryza sativa L.). Afr. J. Agric. Res. 7, 3964-3977.
6 Jiao, Y., Wang, Y., Xue, D., Wang, J., Yan, M., Liu, G., Dong, G., Zeng, D., Lu, Z., Zhu, X., et al. (2010). Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice. Nat. Genet. 42, 541-544.   DOI   ScienceOn
7 Joehanes, R., and Nelson, J.C. (2008). QGene 4.0, an extensible Java QTL-analysis platform. Bioinformatics 24, 2788-2789.   DOI   ScienceOn
8 Khush, G.S. (2005). What it will take to feed 5.0 billion rice consumers in 2030. Plant Mol. Biol. 59, 1-6.   DOI   ScienceOn
9 Jung, K.H., Jeon, J.S., and An, G. (2011). Web tools for rice transcriptome analyses. J. Plant Biol. 54, 65-80.   DOI   ScienceOn
10 Jung, K.H., Gho H.J., Giong H.K., Chandran A.K.N., Nguyen Q.N., Choi H.B, Zhang, T., Wang, W., Kim, J.H., Choi, H.K., et al. (2013). Genome-wide identification and analysis of Japonica and Indica cultivar-preferred transcripts in rice using 983 Affymetrix array data. Rice 6, 19.   DOI   ScienceOn
11 Khush, G.S. (1995). Breaking the yield frontier of rice. Geo J. 35, 329-332.
12 Kosambi, D. (1994). The estimation of map distance from recombination values. Ann. Eugen. 12, 172-175.
13 Lander, E.S., and Botstein, D. (1989). Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121, 185-199.
14 Li, S., Qian, Q., Fu, Z., Zeng, D., Meng, X., Kyozuka, J., Maekawa, M., Zhu, X., Zhang, J., Li, J., et al. (2009). Short panicle1 encodes a putative PTR family transporter and determines rice panicle size. Plant J. 58, 592-605.   DOI   ScienceOn
15 Li, Y., Fan, C., Xing, Y., Jiang, Y., Luo, L., Sun, L., Shao, D., Xu, C., Li, X., Xiao, J., et al. (2011). Natural variation in GS5 plays an important role in regulating grain size and yield in rice. Nat. Genet. 43, 1266-1269.   DOI   ScienceOn
16 Li, S., Xie, K., Li, W., Zou, T., Ren, Y., Wang, S., Deng, Q., Zheng, A., Zhu, J., Liu, H., et al. (2012). Resequencing and genetic variation identification of a rice line with ideal plant architecture. Rice 5, 18.   DOI
17 Liu, G.L., Mei, H.W., Yu, X.Q., Zou, G.H., Liu, H.Y., Hu, S.P., Li, M.S., Wu, J.H., Chen, L., and Luo, J. (2008). QTL analysis of panicle neck diameter, a trait highly correlated with panicle size, under well-watered and drought conditions in rice (Oryza sativa L.). Plant Sci. 174, 71-77.   DOI   ScienceOn
18 Liang, Y.S., Gao, Z.Q., Shen, X.H., Zhan, X.D., Zhang, Y.X., Wu, W.M., Cao, L.Y., and Cheng, S.H. (2011). Mapping and comparative analysis of QTL for rice plant height based on different sample sizes within a single line in RIL population. Rice Sci. 18, 265-272.   DOI   ScienceOn
19 Lin, Y.R., Wu, S.C., Chen, S.E., Tseng, T.H., Chen, C.S., Kuo, S.C., Wu, H.P., and Hsing, Y.C. (2011). Mapping of quantitative trait loci for plant height and heading date in two inter-subspecific crosses of rice and comparison across Oryza genus. Bot. Stud. 52, 1-14.
20 Lincoln, S., Daly, M., and Lander, E. (1993). Constructing genetic linkage maps with MAPMAKER/EXP version 3.0. A tutorial and reference manual. Whitehead Institute for Biomedical Research 3rd (ed) Technical Report.
21 Liu, Y.B., Lu, S.M., Zhang, J.F., Liu, S., and Lu, Y.T. (2009). A xyloglucan endotransglucosylase/hydrolase involves in growth of primary root and alters the deposition of cellulose in Arabidopsis. Planta 226, 1547-1560.
22 Liu, G.F., Li, M., Wen, J., Du, Y., and Zhang, Y.M. (2010). Functional mapping of quantitative trait loci associated with rice tillering. Mol. Genet. Genomics 284, 263-271.   DOI
23 Liu, G., Zhu, H., Zhang, G., Li, L., and Ye, G. (2012). Dynamic analysis of QTLs on tiller number in rice (Oryza sativa L.) with single segment substitution lines. Theor. Appl. Genet. 125, 143-153.   DOI   ScienceOn
24 Lu, J., Sivamani, E., Azhakanandam, K., Samadder, P., Li, X., and Qu, R. (2008). Gene expression enhancement mediated by the 5' UTR intron of the rice rubi3 gene varied remarkably among tissues in transgenic rice plants. Mol. Genet. Genomics 279, 563-572.   DOI
25 Morinaka, Y., Sakamoto, T., Inukai, Y., Agetsuma, M., Kitano, H., Ashikari, M., and Matsuoka, M. (2006). Morphological alteration caused by brassinosteroid insensitivity increases the biomass and grain production of rice. Plant Physiol. 141, 924-931.   DOI   ScienceOn
26 Murray, M.G., and Thompson, W.F. (1980). Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res. 8, 4321-4325.   DOI   ScienceOn
27 Marathi, B., Guleria, S., Mohapatra, T., Parsad, R., Mariappan, N., Kurungara, V.K., Atwal, S.S., Prabhu, K.V., Singh, N.K., and Singh, A.K. (2012). QTL analysis of novel genomic regions associated with yield and yield related traits in new plant type based recombinant inbred lines of rice (Oryza sativa L.). BMC Plant Biol. 12, 137.   DOI
28 Maris, A., Suslov, D., Fry, S.C., Verbelen, J.P., and Vissenberg, K. (2009). Enzymic characterization of two recombinant xyloglucan endotransglucosylase/hydrolase (XTH) proteins of Arabidopsis and their effect on root growth and cell wall extension. J. Exp. Bot. 60, 3959-3972.   DOI   ScienceOn
29 Meuwissen T. (2010). Use of whole genome sequence data for QTL mapping and genomic selection. In Proceedings of the 9th World Congress on Genetics Applied to Livestock Production. [Abstract ID 0018, ISBN 978-3-00-031608-1]
30 Neto, E.C., Keller, M.P., Broman, A.F., Attie, A.D., Jansen, R.C., Broman, K.W., and Yandell, B.S. (2012). Quantile-based permutation thresholds for quantitative trait loci hotspots. Genetics 191, 1355-1365.   DOI
31 Paul, C., and Janet, B. (1999). In vitro activities of four xyloglucan endotransglycosylases from Arabidopsis. Plant J. 18, 371-382.   DOI   ScienceOn
32 Qu, Z., Li, L., Luo, J., Wang, P., Yu, S., Mou, T., Zheng, X., and Hu, Z. (2012). QTL mapping of combining ability and heterosis of agronomic traits in rice backcross recombinant inbred lines and hybrid crosses. PLoS One 7, e28463.   DOI
33 Sano, Y. (1992). Genetic comparisons of chromosome 6 between wild and cultivated rice. Jpn. J. Breed. 42, 561-572.   DOI
34 Takagi, H., Abe, A., Yoshida, K., Kosugi, S., Natsume, S., Mitsuoka, C., Uemura, A., Utsushi, H., Tamiru, M., Takuno, S., et al. (2013). QTL-seq: rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations. Plant J. 74, 174-183.   DOI   ScienceOn
35 Rahman, L., Khanam, M.S., and Kho, H.J. (2008). QTL analysis for yield related traits using populations derived from an indicajaponica hybrid in rice (Oryza sativa L.). Czech J. Genet. Plant Breed. 3, 93-104.
36 Routaboul, J.M., Dubos, C., Beck, G., Marquis, C., Bidzinski, P., Loudet, O., and Lepiniec, L. (2012). Metabolite profiling and quantitative genetics of natural variation for flavonoids in Arabidopsis. J. Exp. Bot. 63, 3749-3764.   DOI
37 Suh, H., and Hue, M. (1978). The segregation mode of plant height in the cross of rice varieties. XI. Linkage analysis of the semidwarfness of the rice variety 'Tongil'. Korean J. Breed. 10, 1-6.
38 Tamura, K., Nomura, K., Oshima, I., Namai, H., Yano, M., Sasaki, T., and Kikuchi, F. (1998). Identification of restriction fragment length polymorphism markers tightly linked to a major photoperiod sensitivity gene, Se-1, and to a blast resistance gene, Pi-zt, in rice. SABRAO J. Breed. Genet. 30, 61-67.
39 Temnykh, S., DeClerck, G., Lukashova, A., Lipovich, L., Cartinhour, S., and McCouch, S. (2001). Computational and experimental analysis of microsatellites in rice (Oryza sativa L.): frequency, length variation, transposon associations, and genetic marker potential. Genome Res. 11, 1441-1452.   DOI   ScienceOn
40 Tuinstra, M., Ejeta, G., and Goldsbrough, P. (1997). Heterogeneous inbred family (HIF) analysis: a method for developing nearisogenic lines that differ at quantitative trait loci. Theor. Appl. Genet. 95, 1005-1011.   DOI
41 Wang, L., Wang, A., Huang, X., Zhao, Q., Dong, G., Qian, Q., Sang, T., and Han, B. (2010). Mapping 49 quantitative trait loci at high resolution through sequencing-based genotyping of rice recombinant inbred lines. Theor. Appl. Genet. 122, 327-340.
42 Tisne, S., Reymond, M., Vile, D., Fabre, J., Dauzat, M., Koornneef, M., and Granier, C. (2008). Combined genetic and modeling approaches reveal that epidermal cell area and number in leaves are controlled by leaf and plant developmental processes in Arabidopsis. Plant Physiol. 148, 1117-1127.   DOI   ScienceOn
43 Tomohiko, T., Hirokazu, T., and Hirofumi, U. (1996). Two independent and polarized processes of cell elongation regulate leaf blade expansion in Arabidopsis thaliana (L.) Heynh. Development 122, 1589-1600.
44 Trewavas, A.J. (2001). The population/biodiversity paradox. Agricultural efficiency to save wilderness. Plant Physiol. 125, 174-179.   DOI   ScienceOn
45 Wang, P., Zhou, G., Yu, H., and Yu, S. (2011). Fine mapping a major QTL for flag leaf size and yield-related traits in rice. Theor. Appl. Genet. 123, 1319-1330.   DOI   ScienceOn
46 Wang, P., Zhou, G., Cui, K., Li, Z., and Yu, S. (2012). Clustered QTL for source leaf size and yield traits in rice (Oryza sativa L.). Mol. Breed. 29, 99-113.   DOI
47 Wu, C.Y., Trieu, A., Radhakrishnan, P., Kwok, S.F., Harris, S., Zhang, K., Wang, J., Wan, J., Zhai, H., Takatsuto, S., et al. (2008). Brassinosteroids regulate grain filling in rice. Plant Cell 20, 2130-2145.   DOI   ScienceOn
48 Yoo, S.C., Cho, S.H., Sugimoto, H., Li, J., Kusumi, K., Koh, H.J., Iba, K., and Paek, N.C. (2009). Rice virescent3 and stripe1 encoding the large and small subunits of ribonucleotide reductase are required for chloroplast biogenesis during early leaf development. Plant Physiol. 150, 388-401.   DOI   ScienceOn
49 Yan, J.Q., Zhu, J., He, C.X., Benmousa, M., and Wu, P. (1998). Quantitative trait loci analysis for the developmental behavior of tiller number in rice (Oryza sativa L.). Theor. Appl. Genet. 97, 267-274.   DOI   ScienceOn
50 Xu, X., Liu, X., Ge, S., Jensen, J.D., Hu, F., Li, X., Dong, Y., Gutenkunst, R.N., Fang, L., Huang, L., et al. (2012). Resequencing 50 accessions of cultivated and wild rice yields markers for identifying agronomically important genes. Nat. Biotechnol. 30, 105-111.   DOI
51 Yoo, S.C., Cho, S.H., Zhang, H., Paik, H.C., Lee, C.H., Li, J., Yoo, J.H., Lee, B.W., Koh, H.J., Seo, H.S., et al. (2007). Quantitative trait loci associated with functional stay-green SNU-SG1 in rice. Mol. Cells 24, 83-94.
52 Yue, B., Xue, W.Y., Luo, L.J., and Xing, Y.Z. (2006). QTL analysis for flag leaf characteristics and their relationships with yield and yield traits in rice. Acta Genet. Sin. 33, 824-832.   DOI   ScienceOn
53 Cao, P., Jung, K.H., Choi, D.S., Hwang, D.H., Zhu, J., and Ronald, P.C. (2012). The rice oligonucleotide array database an atlas of rice gene expression. Rice 5, 17.   DOI   ScienceOn
54 Chen, M., Luo, J., Shao, G., Wei, X., Tang, S., Sheng, Z., Song, J., and Hu, P. (2012). Fine mapping of a major QTL for flag leaf width in rice, qFLW4, which might be caused by alternative splicing of NAL1. Plant Cell Rep. 31, 863-872.   DOI   ScienceOn
55 Adenot, X., Elmayan, T., Lauressergues, D., Boutet, S., Bouche, N., Gasciolli, V., and Vaucheret, H. (2006). DRB4-dependent TAS3 trans-acting siRNAs control leaf morphology through AGO7. Curr. Biol. 16, 927-932.   DOI   ScienceOn
56 Asami, T., and Yoshida, S. (1999). Brassinosteroid biosynthesis inhibitors. Trends Plant Sci. 4, 348-353.   DOI   ScienceOn
57 Dupuis, J., and Siegmund, D. (1999). Statistical methods for mapping quantitative trait loci from a dense set of markers. Genetics 151, 373-386.
58 Chin, J.H., Kim, J.H., Jiang, W., Chu, S.H., Woo, M.O., Han, L., Brar, D., and Koh, H.J. (2007). Identification of subspeciesspecific STS markers and their association with segregation distortion in rice (Oryza sativa L.). J. Crop Sci. Biotech. 10, 175-184.
59 Corey, E.J., Seiichi, P.T., and Bartel, B. (1993). Isolation of an Arabidopsis thaliana gene encoding cycloartenol synthase by functional expression in a yeast mutant lacking lanosterol synthase by the use of a chromatographic screen. Proc. Natl. Acad. Sci. USA 90, 11628-11632.   DOI   ScienceOn
60 Choe, S., Fujioka, S., Noguchi, T., Takatsuto, S., Yoshida, S., and Feldmann, K.A. (2001). Overexpression of DWARF4 in the brassinosteroid biosynthetic pathway results in increased vegetative growth and seed yield in Arabidopsis. Plant J. 26, 573-582.   DOI   ScienceOn
61 Eisen, M.B., Spellman, P.T., Brown, P.O., and Botstein, D. (1998). Cluster analysis and display of genome-wide expression patterns. Proc. Natl. Acad. Sci. USA 95, 14863-14868.   DOI   ScienceOn
62 Fan, S.C., Lin, C.S., Hsu, P.K., Lin, S.H., and Tsay, Y.F. (2009). The Arabidopsis nitrate transporter NRT1.7, expressed in phloem, is responsible for source-to-sink remobilization of nitrate. Plant Cell 21, 2750-2761.   DOI   ScienceOn
63 Farooq, M., Tagle, A.G., Santos, R.E., Ebron, L.A., Fujita, D., and Kobayashi, N. (2010). Quantitative trait loci mapping for leaf length and leaf width in rice cv. IR64 derived lines. J. Integr. Plant Biol. 52, 578-584.   DOI   ScienceOn
64 Fujii, S., Hirai, K., and Saka, H. (1991). Growth-regulating action of brassinolide in rice plants. In: Brassinosteroids. Chemistry, Bioactivity, and Application. H.G. Cutler, T. Yokota, G. Adam, eds., (American Chemical Society, Washington DC), 74, 306-311.
65 Hayama, R., and Coupland, G. (2004). The molecular basis of diversity in the photoperiodic flowering responses of Arabidopsis and rice. Plant Physiol. 135, 677-684.   DOI   ScienceOn
66 Hayama, R., Yokoi, S., Tamaki, S., Yano, M., and Shimamoto, K. (2003). Adaptation of photoperiodic control pathways produces short-day flowering in rice. Nature 422, 719-722.   DOI   ScienceOn
67 Yu, B.S., Lin, Z.W., Li, H.X., Li, X.J., Li, J.Y., Wang, Y.H., Zhang, X., Zhu, Z.F., Zhai, W.X., Wang, X.K., et al. (2007). TAC1, a major quantitative trait locus controlling tiller angle in rice. Plant J. 52, 891-898.   DOI   ScienceOn
68 Huang, X., Feng, Q., Qian, Q., Zhao, Q., Wang, L., Wang, A., Guan, J., Fan, D., Weng, Q., Huang, T., et al. (2009). High-throughput genotyping by whole-genome resequencing. Genome Res. 19, 1068-1076.   DOI   ScienceOn
69 Lander, E.S., Green, P., Abrahamson, J., Barlow, A., Daly, M.J., Lincoln, S.E., and Newberg, L.A. (1987). MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1, 174-181.   DOI
70 Rose, A.B., Elfersi, T., Parra, G., and Korf, I. (2008). Promoter-proximal introns in Arabidopsis thaliana are enriched in dispersed signals that elevate gene expression. Plant Cell 20, 543-551.   DOI   ScienceOn