• Title/Summary/Keyword: realcompact spaces

Search Result 5, Processing Time 0.017 seconds

MINIMAL QUASI-F COVERS OF REALCOMPACT SPACES

  • Jeon, Young Ju;Kim, Chang Il
    • The Pure and Applied Mathematics
    • /
    • v.23 no.4
    • /
    • pp.329-337
    • /
    • 2016
  • In this paper, we show that every compactification, which is a quasi-F space, of a space X is a Wallman compactification and that for any compactification K of the space X, the minimal quasi-F cover QFK of K is also a Wallman compactification of the inverse image ${\Phi}_K^{-1}(X)$ of the space X under the covering map ${\Phi}_K:QFK{\rightarrow}K$. Using these, we show that for any space X, ${\beta}QFX=QF{\beta}{\upsilon}X$ and that a realcompact space X is a projective object in the category $Rcomp_{\sharp}$ of all realcompact spaces and their $z^{\sharp}$-irreducible maps if and only if X is a quasi-F space.

MINIMAL BASICALLY DISCONNECTED COVERS OF SOME EXTENSIONS

  • Kim, Chang-Il;Jung, Kap-Hun
    • Communications of the Korean Mathematical Society
    • /
    • v.17 no.4
    • /
    • pp.709-718
    • /
    • 2002
  • Observing that each Tychonoff space X has the minimal basically disconnected cover (ΛX, Λ$\sub$X/) and the .realcompact-ification $\upsilon$X, we introduce a concept of stable $\sigma$Z(X)#-ultrafilters and give internal characterizations of Tychonoff spaces X for which Λ($\upsilon$X) : $\upsilon$(ΛX).

On The Reflection And Coreflection

  • Park, Bae-Hun
    • The Mathematical Education
    • /
    • v.16 no.2
    • /
    • pp.22-26
    • /
    • 1978
  • It is shown that a map having an extension to an open map between the Alex-androff base compactifications of its domain and range has a unique such extension. J.S. Wasileski has introduced the Alexandroff base compactifications of Hausdorff spaces endowed with Alexandroff bases. We introduce a definition of morphism between such spaces to obtain a category which we denote by ABC. We prove that the Alexandroff base compactification on objects can be extended to a functor on ABC and that the compact objects give an epireflective subcategory of ABC. For each topological space X there exists a completely regular space $\alpha$X and a surjective continuous function $\alpha$$_{x}$ : Xlongrightarrow$\alpha$X such that for each completely regular space Z and g$\in$C (X, Z) there exists a unique g$\in$C($\alpha$X, 2) with g=g$^{\circ}$$\beta$$_{x}$. Such a pair ($\alpha$$_{x}$, $\alpha$X) is called a completely regularization of X. Let TOP be the category of topological spaces and continuous functions and let CREG be the category of completely regular spaces and continuous functions. The functor $\alpha$ : TOPlongrightarrowCREG is a completely regular reflection functor. For each topological space X there exists a compact Hausdorff space $\beta$X and a dense continuous function $\beta$x : Xlongrightarrow$\beta$X such that for each compact Hausdorff space K and g$\in$C (X, K) there exists a uniqueg$\in$C($\beta$X, K) with g=g$^{\circ}$$\beta$$_{x}$. Such a pair ($\beta$$_{x}$, $\beta$X) is called a Stone-Cech compactification of X. Let COMPT$_2$ be the category of compact Hausdorff spaces and continuous functions. The functor $\beta$ : TOPlongrightarrowCOMPT$_2$ is a compact reflection functor. For each topological space X there exists a realcompact space (equation omitted) and a dense continuous function (equation omitted) such that for each realcompact space Z and g$\in$C(X, 2) there exists a unique g$\in$C (equation omitted) with g=g$^{\circ}$(equation omitted). Such a pair (equation omitted) is called a Hewitt's realcompactification of X. Let RCOM be the category of realcompact spaces and continuous functions. The functor (equation omitted) : TOPlongrightarrowRCOM is a realcompact refection functor. In [2], D. Harris established the existence of a category of spaces and maps on which the Wallman compactification is an epirefiective functor. H. L. Bentley and S. A. Naimpally [1] generalized the result of Harris concerning the functorial properties of the Wallman compactification of a T$_1$-space. J. S. Wasileski [5] constructed a new compactification called Alexandroff base compactification. In order to fix our notations and for the sake of convenience. we begin with recalling reflection and Alexandroff base compactification.

  • PDF

Characterization of Function Rings Between C*(X) and C(X)

  • De, Dibyendu;Acharyya, Sudip Kumar
    • Kyungpook Mathematical Journal
    • /
    • v.46 no.4
    • /
    • pp.503-507
    • /
    • 2006
  • Let X be a Tychonoff space and ${\sum}(X)$ the set of all the subrings of C(X) that contain $C^*(X)$. For any A(X) in ${\sum}(X)$ suppose $_{{\upsilon}A}X$ is the largest subspace of ${\beta}X$ containing X to which each function in A(X) can be extended continuously. Let us write A(X) ~ B(X) if and only if $_{{\upsilon}A}X=_{{\upsilon}B}X$, thereby defining an equivalence relation on ${\sum}(X)$. We have shown that an A(X) in ${\sum}(X)$ is isomorphic to C(Y ) for some space Y if and only if A(X) is the largest member of its equivalence class if and only if there exists a subspace T of ${\beta}X$ with the property that A(X)={$f{\in}C(X):f^*(p)$ is real for each $p$ in T}, $f^*$ being the unique continuous extension of $f$ in C(X) from ${\beta}X$ to $\mathbb{R}^*$, the one point compactification of $\mathbb{R}$. As a consequence it follows that if X is a realcompact space in which every $C^*$-embedded subset is closed, then C(X) is never isomorphic to any A(X) in ${\sum}(X)$ without being equal to it.

  • PDF