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Abstract. Let X be a Tychonoff space and
P

(X) the set of all the subrings of

C(X) that contain C∗(X). For any A(X) in
P

(X) suppose υAX is the largest sub-

space of βX containing X to which each function in A(X) can be extended continu-

ously. Let us write A(X) ∼ B(X) if and only if υAX = υBX, thereby defining an

equivalence relation on
P

(X). We have shown that an A(X) in
P

(X) is isomorphic

to C(Y ) for some space Y if and only if A(X) is the largest member of its equiv-

alence class if and only if there exists a subspace T of βX with the property that

A(X) = {f ∈ C(X) : f∗(p) is real for each p in T}, f∗ being the unique continuous exten-

sion of f in C(X) from βX to R∗, the one point compactification of R. As a consequence

it follows that if X is a realcompact space in which every C∗-embedded subset is closed,

then C(X) is never isomorphic to any A(X) in
P

(X) without being equal to it.

1. Introduction

It is well known in the theory of rings of continuous functions that for a Ty-
chonoff space X, C∗(X) is isomorphic to C(βX), where βX is the Stone-Čech
compactification of X; in other words every C∗ is a function ring in the sense that
it is isomorphic to some C. Intimately connected with this fact is the result that
the structure space of each of the rings C(X) and C∗(X) is βX. This result has
been superseded to a great extent by D. Plank [6], who has proved that the struc-
ture space of any ring that lies between C∗(X) and C(X) is also βX. We have
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shown that in case C∗(X) 6= C(X), there exists at least 2c many such rings, where
c is the cardinality of the continuum. It is therefore quite natural to ask which
are function rings amongst these. We answer this in terms of a number of condi-
tions, each necessary as well as sufficient for the positive answer to this question.
A bit of elaboration is needed to explain these things. Suppose

∑
(X) is the set

of all rings that lie between C∗(X) and C(X), and A(X) is in
∑

(X). Since the
structure space of A(X) is βX, the set of all maximal ideals can be written as
{Mp

A : p ∈ βX}. Mp
A is called real if and only if the residue class field A(X)/Mp

A is
isomorphic to R, otherwise it is called hyper-real. The set of all those points p in
βX for which Mp

A is real, is denoted by υAX and is called the A-compactification
of X. By the definition of υAX it is clear that X ⊂ υAX ⊂ βX. In this termi-
nology υCX = υX and υC∗X = βX. X is called A-compact if every real maximal
ideal in it is fixed. Therefore X becomes A-compact if and only if X = υAX, and
it is established in [2] that υAX is the largest subspace of βX containing X to
which each function in A(X) can be extended continuously. Furthermore the space
υAX = {p ∈ βX : f∗(p) ∈ R for each f ∈ A(X)}, where f∗ : βX 7→ R ≡ R⋃{∞}
is the unique continuous extension of f in C(X) over βX. It follows that every
A-compact space is realcompact. (See [2] for a detailed discussion on all these
topics.)

For any A(X), B(X) ∈ ∑
(X) we write A(X) ∼ B(X) if and only if υAX =

υBX. Then ‘∼’ defines an equivalence relation on
∑

(X). It was established in [2]
that each equivalence class has a largest member, which we record for our ready
reference.

Theorem 1.1. The largest member of the equivalence class [A(X)] containing
A(X) is given by {g|X : g ∈ C(υAX)}.

We establish in section 2 that these largest members can indeed be achieved by
considering suitable subsets of βX in the form of the following proposition:

Theorem 1.2. A(X) ∈ ∑
(X) is the largest member of [A(X)] if and only if there

exists a subset T of βX with the property:

A(X) = {f ∈ C(X) : f∗(p) ∈ R for each p ∈ T}.

It is clear from Theorem 1.1 that if A(X) is the largest member of its equivalence
class then the canonical map: f → fυA establishes an isomorphism from the ring
A(X) onto the ring C(υAX), and in particular A(X) is identified as a function ring.
(Here fυA stands for the unique real valued continuous extension of f from X to
υAX.) It is interesting to note that any function ring in the family

∑
(X) also

shares this property. Indeed in section 2, we prove the following result:

Theorem 1.3. Let A(X) ∈ ∑
(X) be a function ring. Then the map f 7→ fυA

defines an isomorphism from A(X) onto the ring C(υAX).
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This Theorem 1.3 has turned out to be crucial towards the following character-
ization of function rings, which we also establish in section 2.

Theorem 1.4. A(X) ∈ ∑
(X) is a function ring if and only if it is the largest

member of its equivalence class.

Combining Theorems 1.2, 1.3, 1.4 we have the following comprehensive result
almost immediately.

Theorem 1.5. For any ring A(X) lying between C∗(X) and C(X) the following
statements are equivalent.

(1) A(X) is a function ring.

(2) A(X) is the largest member of its equivalence class.

(3) A(X) is isomorphic to the ring C(υAX) under the canonical mapping
f 7→ fυA .

(4) There exists a subset T of βX such that

A(X) = {f ∈ C(X) : f∗(p) ∈ R ∀ p ∈ T}.

We conclude this introductory section with the statement of our final theorem,
which we also prove in section 2. It is well known that C(X) is never isomorphic to
C∗(X) without being equal to it [4]. For a large class of spaces X we have improved
this result in the following form.

Theorem 1.6. Suppose X is a non-compact realcompact space in which every C∗-
embedded subset is closed (in particular therefore X may be a metrizable space with
non measurable cardinal). Then given any A(X) ∈ ∑

(X) with A(X) 6= C(X),
C(X) is never isomorphic to A(X).

It is not known to us whether this theorem remains still valid without the
assumption of the closedness of the C∗-embedded subset of X.

2. Function rings: their characterizations

In this section our principal aim is to give proofs of the Theorems 1.2, 1.3, 1.4,
1.6 stated in the introductory section. For any subset T of βX let us set

CT (X) ≡ CT = {f ∈ C(X) : f∗(p) ∈ R for all p ∈ T}.

Then it is easy to see that CT (X) is a subring of C(X) containing C∗(X).

Proof of Theorem 1.2. Let T be a subset of βX and let B(X) be a member of
∑

(X)
with υBX = υCT X. We choose f in A(X) and p in T arbitrarily. Since T ⊂ υCT X
it follows that p ∈ υCT

X and therefore p ∈ υBX. Accordingly f∗(p) ∈ R. Thus
f ∈ CT . Hence A(X) ⊂ CT (X), consequently CT (X) is the largest member of its
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equivalence class. Conversely let A(X) be the largest member of its equivalence class
[A(X)].We shall show that A(X) = CυAX(X). Since for each f in A(X) and p in
υAX, f∗(p) is real, it is trivial that A(X) ⊆ CυAX(X). Conversely let f ∈ CυAX(X)
and p ∈ υAX. Then f∗(p) is real and therefore g = f∗|υAX ∈ C(υAX). Theorem
1.1 tells us that g|X ∈ A, but since g|X = f it follows that f ∈ A(X). Thus
CυAX(X) ⊆ A(X). Hence A(X) = CυAX(X). ¤

For any point p in βX−υX, let us write Cp instead of C{p}. Now choosing any
point q in βX − υX different from p we can find an l ∈ C∗(X) with lβ(p) = 0 and
lβ(q) = 1 with l not vanishing anywhere on X (lβ of course stands for the Stone
extension of l from X to βX.) On the other hand there also exists an h ∈ C∗(X),
not vanishing anywhere on X for which hβ(q) = 0. On putting k = l2 + h2, we
have k ∈ C∗(X), kβ(q) = 0 and kβ(p) > 1. If we take g = 1

k , then g∗(q) = ∞ and
g∗(p) ∈ R. Consequently g ∈ Cp and q 6∈ υCp

X. Thus we have for each element p
in βX−υX, υCpX = υX ∪{p}. Since for a non-pseudocompact space X, βX−υX
contains at least 2c many points [4], it follows that {Cp : p ∈ βX−υX} is an infinite
set containing at least 2c many members with Cp 6= Cq whenever p 6= q. Clearly
then if C(X) 6= C∗(X), there exists at least 2c many different equivalence classes
in the family

∑
(X).

Proof of Theorem 1.3. Since A(X) is a function ring, there exists a realcompact
space Y with an isomorphism t from A(X) onto C(Y ). As the property of being
a real maximal ideal is an algebraic invariant, for any p ∈ υAX, t(Mp

A) is a real
maximal ideal in C(Y ) and therefore it is fixed due to the realcompactness of Y .
Accordingly

⋂
g∈t(Mp

A) ZY (g) is a singleton set, where ZY (g) stands for the zero
set of the function g in the space Y . We define a mapping Ψ : υAX −→ Y by
the rule Ψ(p) =

⋂
g∈t(Mp

A) ZY (g). Then Ψ is clearly one-to-one. Again for any
point y in Y if My = {h ∈ C(Y ) : h(y) = 0} is the corresponding fixed maximal
ideal in C(Y ), then there is a unique point p in υAX with My = t(Mp

A) and so
Ψ(p) = y. Now {SA(f) : f ∈ A(X)} being a base for closed subsets of βX,
where SA(f) = {p ∈ βX : f ∈ Mp

A} [6], it is obvious that {SA(f)
⋂

υAX : f ∈
A(X)} is a base for closed subsets of υAX and we observe that for any f ∈ A(X),
Ψ(SA(f)

⋂
υAX) = ZY (t(f)). Hence Ψ carries the basic closed sets in υAX onto

Y . Suppose s : C(Y ) −→ C(υAX) is the isomorphism induced by Ψ, that is, for
any g in C(Y ), s(g) = g ◦Ψ. Since t : A(X) −→ C(Y ) is already an isomorphism,
we see that s ◦ t becomes an isomorphism from A(X) onto C(υAX). Let us choose
an f ∈ A(X). To prove the theorem it is sufficient to prove that t(f) ◦ Ψ = fυA .
Since t(f) ◦ Ψ is clearly a real-valued continuous function on υAX it is enough to
show that it is an extension of f . Now if we choose x ∈ X then for any h in the
fixed maximal ideal Mx

A of A(X), we have t(h)(Ψ(x)) = 0. Hence it follows that
t(f − f(x))(Ψ(x)) = 0 (where f(x) is the constant function on X which takes the
value f(x) at all points of X), so that t(f)(Ψ(x)) = f(x). ¤

Proof of Theorem 1.4. If A(X) is the largest member of its equivalence class, then
we have already observed in the introductory section that A(X) is a function ring.
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Conversely, suppose A(X) is not the largest member of its equivalence class.
Then from Theorem 1.1 there exists a g ∈ C(υAX) for which g|X is not in A(X).
Accordingly there cannot exist any f ∈ A(X) with fυA = g and therefore the canon-
ical map T : A(X) −→ C(υAX) defined by T (f) = fυA is not an isomorphism on
A(X) onto C(υAX). Hence by Theorem 1.3, A(X) is not a function ring. ¤
Proof of Theorem 1.6. If A(X) is not the largest member of its equivalence class,
then from Theorem 1.4 it is not a function ring and therefore it can not be isomor-
phic to C(X). Next suppose that A(X) is the largest member of its equivalence
class contained properly in C(X). Hence A(X) does not belong to [C(X)]. Now
since X is realcompact, X = υX and therefore X & υAX. Again the result of
Theorem 1.5 tells us that A(X) is not isomorphic to C(υAX). Suppose now that
A(X) is isomorphic to C(X). Since X and υAX are both realcompact, it follows in
view of Hewitt’s isomorphism theorem [4] that X is homeomorphic to υAX under
a mapping say, α : υAX −→ X. As X is dense in υAX, it is plain that α(X) is
also dense in X and is also contained in X properly; but X is also C∗-embedded in
υAX from which it follows that α(X) is C∗-embedded in X and therefore closed in
X. Altogether we get α(X) = X, a contradiction. Hence A(X) is not isomorphic
to C(X). ¤
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