DOI QR코드

DOI QR Code

MINIMAL QUASI-F COVERS OF REALCOMPACT SPACES

  • Jeon, Young Ju (Department of Mathematics Education, Chonbuk National University) ;
  • Kim, Chang Il (Department of Mathematics Education, Dankook University)
  • Received : 2016.04.25
  • Accepted : 2016.08.19
  • Published : 2016.11.30

Abstract

In this paper, we show that every compactification, which is a quasi-F space, of a space X is a Wallman compactification and that for any compactification K of the space X, the minimal quasi-F cover QFK of K is also a Wallman compactification of the inverse image ${\Phi}_K^{-1}(X)$ of the space X under the covering map ${\Phi}_K:QFK{\rightarrow}K$. Using these, we show that for any space X, ${\beta}QFX=QF{\beta}{\upsilon}X$ and that a realcompact space X is a projective object in the category $Rcomp_{\sharp}$ of all realcompact spaces and their $z^{\sharp}$-irreducible maps if and only if X is a quasi-F space.

Keywords

References

  1. J. Adamek, H. Herrlich & G.E. Strecker: Abstract and Concrete Categories. Wiley, New York, 1990.
  2. J.L. Blasco: Complete bases and Wallman realcompactifications. Proc. Amer. Math. Soc. 75 (1979), 114-118. https://doi.org/10.1090/S0002-9939-1979-0529226-2
  3. F. Dashiell, A.W. Hager & M. Henriksen: Order-Cauchy completions of rings and vector lattices of continuous functions. Canad. J. Math. 32 (1980), 657-685. https://doi.org/10.4153/CJM-1980-052-0
  4. L. Gillman & M. Jerison: Rings of continuous functions. Van Nostrand, Princeton, New York, 1960.
  5. A.M. Gleason: Projective topological spaces. Illinois J. Math. 2 (1958), 482-489.
  6. A.W. Hager & J. Martinez: C-epic compactifications. Topology Appl. 117 (2002), 113-138. https://doi.org/10.1016/S0166-8641(00)00119-X
  7. A.W. Hager: On inverse-closed subalgebras of C(X). Proc. London Math. Soc. 19 (1969), 233-257.
  8. M. Henriksen & R.G. Woods: Cozero-complemented spaces: When the space of minimal prime ideals of a C(X) is compact. Topology Appl. 141 (2004), 147-170. https://doi.org/10.1016/j.topol.2003.12.004
  9. M. Henriksen, J. Vermeer & R.G. Woods: Wallman covers of compact spaces. Dissertationes Mathematicae 280 (1989), 1-31.
  10. M. Henriksen, J. Vermeer & R.G. Woods: Quasi F-covers of Tychonoff spaces. Trans. Amer. Math. Soc. 303 (1987), 779-804.
  11. C.I. Kim: Minimal covers and filter spaces. Topology Appl. 72 (1996), 31-37. https://doi.org/10.1016/0166-8641(96)00009-0
  12. J. Porter & R.G. Woods: Extensions and Absolutes of Hausdorff Spaces. Springer, Berlin, 1988.
  13. A.K. Steiner & E.F. Steiner: Nested generated intersection rings in Tychonoff spaces. Trans. Amer. Math. Soc. 303 (1970), 779-804.
  14. E.F. Steiner: Normal families and completely regular spaces. Duke Math. J. 33 (1966), 743-745. https://doi.org/10.1215/S0012-7094-66-03389-8
  15. J. Vermeer: The smallest basically disconnected preimage of a space. Topology Appl. 17 (1984), 217-232. https://doi.org/10.1016/0166-8641(84)90043-9