
J. Korean Soc. Math. Educ. Ser. B: Pure Appl. Math. ISSN(Print) 1226-0657
http://dx.doi.org/10.7468/jksmeb.2016.23.4.329 ISSN(Online) 2287-6081
Volume 23, Number 4 (November 2016), Pages 329–337

MINIMAL QUASI-F COVERS OF REALCOMPACT SPACES

Young Ju Jeon a and Chang Il Kim b, ∗

Abstract. In this paper, we show that every compactification, which is a quasi-F
space, of a space X is a Wallman compactification and that for any compactification
K of the space X, the minimal quasi-F cover QFK of K is also a Wallman com-
pactification of the inverse image Φ−1

K (X) of the space X under the covering map
ΦK : QFK −→ K. Using these, we show that for any space X, βQFX = QFβυX
and that a realcompact space X is a projective object in the category Rcomp# of
all realcompact spaces and their z#-irreducible maps if and only if X is a quasi-F
space.

1. Introduction

All spaces in this paper are Tychonoff spaces and (βX, βX) (resp. (υX, υX))
denotes the Stone-Čech compactification (resp. Hewitt realcompactification) of a
space X.

Gleason in [5] showed that the projective objects in the category of all compact
spaces and continuous maps are precisely the extremally disconnected spaces and
that each compact space has a unique projective cover, namely its absolute. Iliadis
(resp. Banaschewski) proved similar results for the category of all Hausdorff spaces
(resp. regular spaces) and their perfect continuous maps [12].

In order to generalize extremally disconnected spaces, the notions of basically
disconnected spaces, quasi-F spaces, and cloz-spaces have been introduced, and
their minimal covers have been studied by various authors [6, 8, 9, 10, 12, 15].
In particular, Henriksen, Vermeer, and Woods in [10] showed that every space X

has the minimal quasi-F cover (QFX,ΦX). Indeed, if X is a compact space, then
QFX is given by the Wallman cover (L(Z(X)#), ΦX) which in turn is the projective
maximum of X in the category of all compact spaces and their z#-irreducible maps
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[10]. Also the relation of QFX and QFβX was investigated [6, 10, 11]. Among
other results, they showed that βQFX = QFβX if and only if X has the projective
object in the category of all spaces and their z#-irreducible maps and that if X is a
weakly Lindelöf space, then βQFX = QFβX and ΦX is a z#-irreducible map.

Here, we investigate the relation of QFX and QFβX for an arbitrary realcom-
pact space X. We first show that every compactification, which is a quasi-F space,
of a space X is a Wallman compactification (Theorem 3.2) and that for any com-
pactification K of X, the minimal quasi-F cover QFK is also a Wallman com-
pactification of Φ−1

K (X) (Corollary 3.3). Next, using these results, we establish the
equality βQFX = QFβυX for any space X (Proposition 3.4). Finally, we show
that a realcompact space X is the projective object in the category Rcomp# of all
realcompact spaces and their z#-irreducible maps if and only if X is a quasi-F space
(Corollary 3.6). For the terminology, we refer to [1, 4, 12].

2. Covers and Extensions

We recall that a space X is called realcompact if each z-ultrafilter on X with the
countable intersection property is fixed and that a pair (Y, j) or simply Y is called a
compactification (resp. realcompactification) of X if j : X ↪→ Y is a dense embedding
and Y is a compact (resp. realcompact) space. The following notion due to E. F.
Steiner is the basic device in the present setting [13, 14].

Definition 2.1. Let X be a space and F a family of closed sets in X. Then F is
called a separating nested generated intersection ring on X if

(1) it is closed under finite unions and countable intersections,
(2) for any closed set H in X and x /∈ H , there are disjoint A , B in F such

that x ∈ A and H ⊆ B, and
(3) for any F ∈ F , there are sequences (An) and (Bn) in F such that for each

n ∈ N, X −An+1 ⊆ Bn+1 ⊆ X −An ⊆ Bn and F =
⋂{Bn |n ∈ N} .

For any space X, we denote by L(X) the set of all separating nested generated
intersection rings on X. It is then well-known that the set Z(X) of all zero-sets in
a space X belongs to L(X) [4] and that for any F ∈ L(X) and S ⊆ X, the set

FS = {F ∩ S | F ∈ F},
called the trace of F on the subspace S of X, belongs to L(S) [13, Lemma 1.3]. For
any F ∈ L(X), let (ω(X,F), wX) be the Wallman compactification of X associated
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with F [12, 13]. Concerning the Wallman compactifications, we will often use the
following fact: If (Y, j) is a compactification of X such that Z(Y )X ⊆ F , then there
is a continuous map f : ω(X,F) −→ Y such that f ◦ ωX = j [12, Theorems 4.2(h),
4.4(g)].

Let υ(X,F) be the set of all F-ultrafilters on X with the countable intersection
property. The topology on υ(X,F), taking sets of the form

F ∗ = {α ∈ υ(X,F) | F ∈ α}
as a base for the closed sets, coincides with the subspace topology on υ(X,F) of
ω(X,F), and υ(X,F) is in fact a realcompactification of X, called a Wallman re-
alcompactification of X [13]. The poof of the following Lemma 2.2 can be found in
[2, Theorem 2, Corollary 2.1] and [13, Theorem 2.2].

Lemma 2.2. Let X be a space and F ∈ L(X). Then we have the following:

(1) Z(ω(X,F))X = F ,
(2) υ(X, F̂) = υ(X,F), and
(3) ω(X, F̂) = β(υ(X,F)), where F̂ = Z(υ(X,F))X .

Let X be a space and Tδ the topology on X generated by the family of all Gδ-
sets in X, and let cl(X,δ)(A) be the closure of A in (X, Tδ) for any A ⊆ X. Then
x ∈ cl(X,δ)(A) if and only if Z ∩ A 6= ∅ for any zero-set Z in X with x ∈ Z. The
closure cl(X,δ)(A) is also called the Q-closure of A in X [2, 7].

Proposition 2.3. Let X be a space and (Y, j) a realcompactification of X. The
following statements are equivalent.

(1) Y is a Wallman realcompactification of X.
(2) v(X,Z(Y )X) = Y .
(3) cl(βY,δ)(X) = Y .
(4) if Z is a zero-set in Y with Z ∩X = ∅, then Z = ∅.

Proof.
(1) ⇒ (2) Since Y is a Wallman realcompactification of X, there is an F ∈ L(X)

such that Y = υ(X,F). By Lemma 2.2, Y = v(X, Z(Y )X).
(2) ⇒ (3) Let y ∈ βY − Y . Since Y is realcompact, there is a zero-set Z in βY

such that y ∈ Z and Z ∩ Y = ∅ [4, Remark 8.8]. Hence Z ∩ X = ∅. So, we have
y /∈ cl(βY,δ)(X), showing cl(βY,δ)(X) ⊆ Y . On the other hand, let t ∈ Y −cl(βY,δ)(X).
There is a zero-set A in βY such that t ∈ A and A ∩ X = ∅. If A ∩ Y 6= ∅, then
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there is an α ∈ Y ∩A = υ(X,F) ∩A. Since A ∈ Z(βY ), there is a continuous map
f : βY −→ [0, 1] such that f−1(0) = A. For each n ∈ N, let

Zn = f−1([0,
1
n

]).

It then follows that Zn+1 ⊆ intβY (Zn) and Zn ∩X ∈ Z(Y )X with

A =
⋂
{Zn | n ∈ N}.

Suppose that Zn ∩X /∈ α for some n ∈ N. Since α is a Z(Y )X -ultrafilter, there is a
B ∈ Z(βY ) such that B ∩X ∈ α and Zn ∩X ∩B = ∅. Hence

intβY (Zn) ∩ clβY (X ∩B) = ∅,

showing A ∩ clβY (B ∩X) = ∅ as A ⊆ intβY (Zn). Since α ∈ clY (B ∩X), we obtain
α ∈ A∩clβY (B∩X), which is a contradiction. Thus Zn∩X ∈ α for all n ∈ N. Now, as
α has the countable intersection property, A∩X ∈ α, which is a contraction. Hence
A ∩ Y = ∅. Thus we must conclude t /∈ Y − cl(βY,δ)(X). Therefore Y = cl(βY,δ)(X)
as desired.

(3) ⇒ (4) It is trivial.
(4) ⇒ (1) Let F = Z(Y )X . Since Z(βY )X = F , there is a continuous map

k : ω(X,F) −→ βY with k ◦ ωF = βY ◦ j . Take any zero-sets A and B in ω(X,F)
such that A ∩B ∩X = ∅. By Lemma 2.2, we have Z(ω(X,F))X = F . Thus, there
are zero-sets C and D of Y such that A ∩ X = C ∩ X and B ∩ X = D ∩ X. So,
C∩D∩X = ∅. By hypothesis (4), necessarily C∩D = ∅. Hence clβY (C)∩clβY (D) =
∅ [4], showing

clβY (A ∩X) ∩ clβY (B ∩X) = ∅.
By Urysohn’s extension theorem, βY and ω(X,F) are homeomorphic. Now, as
cl(ω(X,F),δ)(X) = υ(X,F) [7, Theorem 5.3], we have

Y = cl(βY,δ)(X) = cl(ω(X,F),δ)(X) = υ(X,F),

showing that Y is a Wallman realcompactification of X. ¤

Recall that a continuous map f : X −→ Y is called a covering map if f is onto,
perfect, closed, and irreducible [12, Chapter 8].

Proposition 2.4. Let X be a space and f : Y → βX a covering map such that Y is
a Wallman compactification of f−1(X). Then v(f−1(X), Z(Y )f−1(X)) ⊆ f−1(υX).
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Proof. Since Y is a Wallman compactification of f−1(X),

β(υ(F−1(X), Z(Y )f−1(X))) = ω(f−1(X), Z(Y )f−1(X))

because υ(F−1(X), Z(Y )f−1(X)) is a wallman realcompactification of f−1(X)(see
the proof of (4) ⇒ (1) in Proposition 2.3). By Lemma 2.2, we have

Y = ω(f−1(X), Z(Y )f−1(X)) = β(υ(f−1(X), Z(Y )f−1(X))) = ω(f−1(X), F̂),

where F = Z(Y )f−1(X). Let S = v(f−1(X), Z(Y )f−1(X)) and t ∈ Y − f−1(υX).
Since f(t) /∈ υX, there is a zero-set Z in βX such that f(t) ∈ Z and Z ∩ υX = ∅.
Thus f−1(Z)∩f−1(X) = ∅, showing f−1(Z)∩S∩f−1(X) = ∅. Now, as f−1(Z)∩S is
a zero-set in S, by Proposition 2.3, f−1(Z)∩ S = ∅. Therefore t /∈ S as desired. ¤

Corollary 2.5. Let X be a space and f : Y −→ βX a covering map such that Y is
a Wallman compactification of f−1(X). Then υ(f−1(X), Z(Y )f−1(X)) = f−1(υX)
if and only if f−1(υX) is a Wallman realcompactification of f−1(X).

Proof. (⇒) It is trivial.
(⇐) Let S = υ(f−1(X), Z(Y )f−1(X)). By Proposition 2.4, we have S ⊆ f−1(υX).

Suppose that there is a t ∈ f−1(υX) − S. Then there is a zero-set Z in βS such
that t ∈ Z and Z ∩ S = ∅. Since Z ∩ f−1(υX) is a non-empty zero-set in f−1(υX)
and f−1(υX) is a Wallman realcompactification of f−1(X), by Proposition 2.3,
Z ∩ f−1(X) 6= ∅. This is a contradiction. ¤

3. Projective Objects in the Category of Realcompact Spaces
and z#-irreducible Maps

In this last section, we prove the main Theorem 3.2 about the quasi-F compact-
ifications of spaces.

First, we recall from [4] that a subspace X of a space Y is called C∗-embedded
in Y if for any real-valued continuous map f : X −→ R, there is a continuous map
g : Y −→ R such that g|X = f . Also, a space X is called a quasi-F space if every
dense cozero-set in X is C∗-embedded in X, or, equivalently, for any zero-sets A,B

in X, clX(intX(A∩B)) = clX(intX(A))∩clX(intX(B)) [10, Lemma 2.10]. We further
recall the following definitions [10].

Definition 3.1. Let X be a space. Then a pair (Y, f) is called

(1) a cover of X if f : X −→ Y is a covering map,
(2) a quasi-F cover of X if (Y, f) is a cover of X and Y is quasi-F space, and
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(3) a minimal quasi-F cover of X if (Y, f) is a quasi-F cover of X, and for any
quasi-F cover (Z, g) of X, there is a covering map h : Z −→ Y such that
f ◦ h = g.

Theorem 3.2. Let Y be a compactification of a space X. If Y is a quasi-F space,
then Y is a Wallman compactification of X. In fact, Y = w(X,Z(Y )X).

Proof. Consider the Wallman compactification K = w(X,G) of X associated with
G = Z(Y )X . By the basic fact mentioned in Section 2, there is a continuous map
f : K → Y such that f ◦ ωG = j , where j : X → Y is a dense embedding. Take
any disjoint closed sets A,B in K . Since K is a compact space, there are disjoint
zero-sets C, D in K such that A ⊆ intK(C) and B ⊆ intK(D) . Since Z(K)X =
Z(w(X,G))X = G, certainly C ∩X and D∩X belong to G. Also, since G = Z(Y )X ,

there are E, F ∈ Z(Y ) such that C ∩X = E ∩X and D ∩X = F ∩X. Clearly,
intY (E) ∩ X ⊆ intX(E ∩ X). Take any x ∈ intX(E ∩ X). Then there is an open
neighborhood U of x in Y such that U ∩ X ⊆ E ∩ X. Since X is dense in Y and
U is open in Y, clY (U) = clY (U ∩X) ⊆ E and x ∈ intY (E). Hence intY (E) ∩X =
intX(E ∩X). Similarly, intK(C) ∩X = intX(C ∩X). Thus

intY (E) ∩X = intK(C) ∩X and intY (F ) ∩X = intK(D) ∩X.

Since C ∩D = ∅ , intY (E)∩X ∩ intY (F ) = ∅, we have intY (E)∩ intY (F ) = ∅ . Since
Y is a quasi-F space, clY (intY (E)) ∩ clY (intY (F )) = ∅. Further notice that

A ∩X ⊆ intK(C) ∩X = intY (E) ∩X ⊆ intY (E)

and B ∩X ⊆ intY (F ). Thus we have clY (A ∩X) ∩ clY (B ∩X) = ∅. Now, by the
Urysohn’s extension theorem, there is a continuous map g : Y → K with g ◦ j = wG .
Composing with f , we obtain f ◦ g ◦ j = f ◦ wG = 1Y ◦ j. Since j : X −→ Y is a
dense embedding, f ◦ g = 1Y . Hence f is a homeomorphism. ¤

It is known that every space X has the minimal quasi-F cover (QFX,ΦX). For
the detailed accounts for quasi-F covers of X, see [3, 9, 12].

Corollary 3.3. If K is a compactification of X, then QFK is a Wallman compact-
ification of Φ−1

K (X).

In the following, for any space X, let (QFβX,Φβ) denote the minimal quasi-F
cover of βX, and let S = υ(Φ−1

β (X), Z(QFβX)Φ−1
β (X)). By Corollary 3.3, we have

the following Proposition 3.4.
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Proposition 3.4. Let X be a space. Then we have the following.

(1) QFβX = βS.
(2) S is a quasi-F space.
(3) (Φ−1

β (υX), Φυ) is the minimal quasi-F cover of υX.
(4) βQFυX = QFβX, where Φυ : Φ−1

β (υX) −→ υX is the restriction and
corestriction of Φβ with respect to Φ−1

β (υX) and υX, respectively.

Proof. (1) By Lemma 2.2 and Corollary 3.3, we have QFβX = βS.
(2) Since QFβX = βS, certainly S is a quasi-F space [3, Theorem 5.1].
(3) By Theorem 3.2, the space QFβX is a Wallman compactification of Φ−1

β (X).
Also, by Proposition 2.4, we have S ⊆ Φ−1

β (υX). Since βS = QFβX and Φ−1
β (υX) ⊆

QFβX, it follows that βS = βΦ−1
β (υX) and Φ−1

β (υX) is a quasi-F space. Hence
(Φ−1

β (υX),Φυ) is the minimal quasi-F cover of υX [11].
(4) The fact that S is C∗-embedded in QFβX implies that Φ−1

β (υX) is C∗-
embedded in QFβX. Since S ⊆ Φ−1

β (υX) ⊆ QFβX, by (1), we obtain QFβX =
βQFυX. ¤

As noted in the introduction, we now turn to the conditions on the spaces X

under which QFβX = βQFX. We recall that a space X is called weakly Lindelöf, if
for any open cover U of X, there is a countable subset V of U such that

⋃{V | V ∈ V}
is dense in X. Henriksen, Vermeer, and Woods in [10] showed that QFβX = βQFX

for any weakly Lindelöff space X.
By Proposition 3.4, we obtain the following Corollary 3.5. We note in passing,

however, that there is no direct relationship between realcompact spaces and weakly
Lindelöf spaces.

Corollary 3.5. For any realcompact space X, QFβX = βQFX.

Let C be a topological subcategory of the category Top of topological spaces and
continuous maps [10, Section 4]. An object X in C is called a projective object in C
if for any morphism f : X −→ Y in C and any onto morphism g : Z −→ Y in C,
there is a morphism h : X −→ Z in C such that g ◦ h = f . A pair (Y, f) is called a
projective cover of an object X in C if Y is a projective object in C and f : Y −→ X

is a morphism in C such that f is an onto, closed, irreducible map.
Gleason in [5] showed that the projective objects in the category of all compact

spaces and their continuous maps are exactly the extremally disconnected spaces
and that each compact space has a unique projective cover, namely its absolute.
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Further recall from [10] that a covering map f : Y −→ X is called z#-irreducible if

{f(A) | A ∈ Z(Y )#} = Z(X)#.

Henriksen, Vermeer, and Woods in [10] showed that the quasi-F spaces are the
projective objects in the category Tych# of all spaces and their z#-irreducible
maps [10, Theorem 4.3] and that a space X has a projective cover in Tych# if and
only if QFβX = βQFX [10, Theorem 4.5].

Let Rcomp# be the category of all realcompact spaces and their z#-irreducible
maps. Now, using the fact that if βQFX = QFβX, then the covering map Φ :
QFX −→ X is a z#-irreducible map [10, Theorem 3.5], we obtain the following.

Corollary 3.6. A realcompact space X is a projective object in Rcomp# if and
only if X is a quasi-F space.
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