• Title/Summary/Keyword: real-time computing

Search Result 1,345, Processing Time 0.026 seconds

A TMO Supporting Library and a BCC Scheduler for the Microscale Real-time OS, TMO-eCos) (초경량 실시간 운영체제 TMO-eCos를 위한 TMO 지원 라이브러리 및 BCC 스케줄러)

  • Ju, Hyun-Tae;Kim, Jung-Guk
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.15 no.7
    • /
    • pp.505-509
    • /
    • 2009
  • It is the most important object of real-time computing to make real-time tasks keep their given time conditions. In this paper, we implemented BCC(Basic Concurrency Constraint) scheduler which is provided as an essential element of TMO(Time-triggered Message-triggered Object) model, and TMO Supporting Library that supports object-oriented design for TMO. BCC scheduler is a means to design timeliness-guaranteed computing, and it predicts the start of SpMs first, and then it makes the execution of SvMs deferred when it is predicted that any SpM begins to run currently. In this way, BCC is able to prevent collisions between SpM and SvM, and it gives higher priority to SpMs than SvMs.

A Study on the Latency Analysis of Bus Information System Based on Edge Cloud System (엣지 클라우드 시스템 기반 버스 정보 시스템의 지연시간 분석연구)

  • SEO Seungho;Dae-Sik Ko
    • Journal of Platform Technology
    • /
    • v.11 no.3
    • /
    • pp.3-11
    • /
    • 2023
  • Real-time control systems are growing rapidly as infrastructure technologies such as IoT and mobile communication develop and services that value real-time such as factory management and vehicle operation checks increase. Various solutions have been proposed to increase the time sensitivity of this system, but most real-time control systems are currently composed of local servers and multiple clients located in control stations, which are transmitted to local servers where control systems are located. In this paper, we proposed an edge computing-based real-time control model that can reduce the time it takes for the bus information system, one of the real-time control systems, to provide the information to the user at the time it collects the information. Simulating the existing model and the edge computing model, the edge computing model confirmed that the cost for users to receive data is reduced from at least 10% to up to 80% compared to the existing model.

  • PDF

The Guarantee of Real Time Service Message with TMO in Multi-nodes Systems (다중노드 시스템에서 TMO를 이용한 실시간 서비스 메시지 보장)

  • Kim, Gwang-Jum;Seo, Jong-Joo;Kang, Ki-Ung;Yoon, Chan-Ho
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.1 no.1
    • /
    • pp.20-26
    • /
    • 2006
  • One of the computer application fields which started showing noticeable new growth trends in recent years is the real time communication distributed computing application field. Object -oriented(OO) real time(RT) distributed computing is a form of real-time distributed computing realized with a distributed computer system structured in the form of an object network. In this paper, we describes the application environment as the DHS (distributed high-precision simulation) with TMO structure. The TMO scheme is aimed for enabling a great reduction of the designer's effort in guaranteeing timely service capabilities of distributed computing application systems. It has been formulated from the beginning with the objective of enabling design-time guaranteeing of timely action. In the real time simulation techniques based on TMO object modeling, we have observed several advantages to the TMO structuring scheme. TMO object modeling has a strong traceability between requirement specification and design, cost-effective high-coverage validation, autonomous subsystems, easy maintenance and flexible framework for requirement specification.

  • PDF

Scratchpad Memory Architectures and Allocation Algorithms for Hard Real-Time Multicore Processors

  • Liu, Yu;Zhang, Wei
    • Journal of Computing Science and Engineering
    • /
    • v.9 no.2
    • /
    • pp.51-72
    • /
    • 2015
  • Time predictability is crucial in hard real-time and safety-critical systems. Cache memories, while useful for improving the average-case memory performance, are not time predictable, especially when they are shared in multicore processors. To achieve time predictability while minimizing the impact on performance, this paper explores several time-predictable scratch-pad memory (SPM) based architectures for multicore processors. To support these architectures, we propose the dynamic memory objects allocation based partition, the static allocation based partition, and the static allocation based priority L2 SPM strategy to retain the characteristic of time predictability while attempting to maximize the performance and energy efficiency. The SPM based multicore architectural design and the related allocation methods thus form a comprehensive solution to hard real-time multicore based computing. Our experimental results indicate the strengths and weaknesses of each proposed architecture and the allocation method, which offers interesting on-chip memory design options to enable multicore platforms for hard real-time systems.

Logic circuit design for high-speed computing of dynamic response in real-time hybrid simulation using FPGA-based system

  • Igarashi, Akira
    • Smart Structures and Systems
    • /
    • v.14 no.6
    • /
    • pp.1131-1150
    • /
    • 2014
  • One of the issues in extending the range of applicable problems of real-time hybrid simulation is the computation speed of the simulator when large-scale computational models with a large number of DOF are used. In this study, functionality of real-time dynamic simulation of MDOF systems is achieved by creating a logic circuit that performs the step-by-step numerical time integration of the equations of motion of the system. The designed logic circuit can be implemented to an FPGA-based system; FPGA (Field Programmable Gate Array) allows large-scale parallel computing by implementing a number of arithmetic operators within the device. The operator splitting method is used as the numerical time integration scheme. The logic circuit consists of blocks of circuits that perform numerical arithmetic operations that appear in the integration scheme, including addition and multiplication of floating-point numbers, registers to store the intermediate data, and data busses connecting these elements to transmit various information including the floating-point numerical data among them. Case study on several types of linear and nonlinear MDOF system models shows that use of resource sharing in logic synthesis is crucial for effective application of FPGA to real-time dynamic simulation of structural response with time step interval of 1 ms.

Priority-Based Network Interrupt Scheduling for Predictable Real-Time Support

  • Lee, Minsub;Kim, Hyosu;Shin, Insik
    • Journal of Computing Science and Engineering
    • /
    • v.9 no.2
    • /
    • pp.108-117
    • /
    • 2015
  • Interrupt handling is generally separated from process scheduling. This can lead to a scheduling anomaly and priority inversion. The processor can interrupt a higher priority process that is currently executing, in order to handle a network packet reception interruption on behalf of its intended lower priority receiver process. We propose a new network interrupt handling scheme that combines interrupt handling with process scheduling and the priority of the process. The proposed scheme employs techniques to identify the intended receiver process of an incoming packet at an earlier phase. We implement a prototype system of the proposed scheme on Linux 2.6, and our experiment results show that the prototype system supports the predictable real-time behavior of higher priority processes even when excessive traffic is sent to lower priority processes.

A Study on Real-Time Operating Systems for Architectural Improvement of Naval Combat Systems (함정용 전투체계 아키텍처 개선을 위한 실시간 운영체제 적용방안 연구)

  • Kim, Chum-Su;Chang, Hye-Min;Joo, Jung-Hyun;Lee, Gyoon-Jung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.16 no.3
    • /
    • pp.260-267
    • /
    • 2013
  • A combat system for navy's battleship is a system of systems who supports naval indigenous operations by integrating and inter-operating many different kind of weapon and non-weapon systems, which has characteristics of large-scale complex computing system. This paper considers a characteristics of naval combat system which has been developed by domestic technology and suggests a way to improve future naval combat system in terms of computing architecture by applying commercial real-time operating system technologies. This paper also provides an evaluation criteria for combat system adaptability of real-time operating systems.

Construction of CORBA Object-Group Platform for Distributed Real-Time Service (분산 실시간 서비스를 위한 CORBA 객체그룹 플랫폼의 구축)

  • Kim, Myung-Hee;Joo, Su-Chong
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.7 no.6
    • /
    • pp.602-613
    • /
    • 2001
  • Recently, the computing has developing in distributed object computing environment for supporting a programming paradigm of distributed application requiring interoperability between heterogeneous clients and servers. It involves the complex networking and the object-oriented technologies for various multimedia application service. In this paper, we construct the real-time object group platform for solving the difficulties of managements of distributed objects and the real-time constraints by requiring for real-time service supporting of applications in distributed computing environment. The existing researches are being tried to only improving the performance of systems by using real-time CORBA itself, or modifying the part of CORBA compliance. Hence, we design a new model of real-time object group platform that can support the real-time requirement without modifying the ORB. The structure of our real-time object group analyzed and defined the requirement about object management and real-time application service sides. And the role of the components of real-time object group is divided into 2 classes for reducing the side effect of interoperability between management and service. Also, we considered how to transparently express the parameters of real-time properties for clients and developers of server's service objects. If the expression of real-time parameters is transparent, then the developer can easily extend the real-time parameters simply and flexibly. Therefore, in this paper we defined the role of components of platform and described functions of each component and designed and then implemented the real-time object group platform. Finally, we showed the execution procedures of implemented our platform for verifying the functionality.

  • PDF

Efficient Parallel TLD on CPU-GPU Platform for Real-Time Tracking

  • Chen, Zhaoyun;Huang, Dafei;Luo, Lei;Wen, Mei;Zhang, Chunyuan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.1
    • /
    • pp.201-220
    • /
    • 2020
  • Trackers, especially long-term (LT) trackers, now have a more complex structure and more intensive computation for nowadays' endless pursuit of high accuracy and robustness. However, computing efficiency of LT trackers cannot meet the real-time requirement in various real application scenarios. Considering heterogeneous CPU-GPU platforms have been more popular than ever, it is a challenge to exploit the computing capacity of heterogeneous platform to improve the efficiency of LT trackers for real-time requirement. This paper focuses on TLD, which is the first LT tracking framework, and proposes an efficient parallel implementation based on OpenCL. In this paper, we firstly make an analysis of the TLD tracker and then optimize the computing intensive kernels, including Fern Feature Extraction, Fern Classification, NCC Calculation, Overlaps Calculation, Positive and Negative Samples Extraction. Experimental results demonstrate that our efficient parallel TLD tracker outperforms the original TLD, achieving the 3.92 speedup on CPU and GPU. Moreover, the parallel TLD tracker can run 52.9 frames per second and meet the real-time requirement.

High Level Approach Programming in Real Time Distributed Network System

  • Jeong, Chan-Joo;Kim, Gwang-Jun;Lee, Joon;Nam, Ki-Hwan;Bae, Chul-Soo
    • Proceedings of the IEEK Conference
    • /
    • 2002.07b
    • /
    • pp.1105-1108
    • /
    • 2002
  • Real-time(RT) object-oriented(OO) distributed computing is a form of RT distributed computing realized with a distributed computer system structured in the form of an object network. Several approached proposed in recent years for extending the conventional object structuring scheme to suit RT applications, are briefly reviewed. Then the approach named the TMO(Time-triggered Message-triggered Object)structuring scheme was formulated with the goal of instigating a quantum productivity jump in the design of distributed time triggered simulation. The TMO scheme is intended to facilitate the pursuit of a new paradigm in designing distributed time triggered simulation which is to realize real-time computing with a common and general design style that does not alienate the main-stream computing industry and yet to allow system engineers to confidently produce certifiable distributed time tiggered simulation for safety-critical applications. The TMO structuring scheme is a syntactically simple but semantically powerful extension of the conventional object structuring approached and as such, its support tools can be based on various well-established OO programming languages such as C++ and on ubiquitous commercial RT operating system kernels. The Scheme enables a great reduction of the designers efforts in guaranteeing timely service capabilities of application systems.

  • PDF