High Level Approach Programming in Real Time Distributed Network System

Chan-Joo Jeong', Gwang-Jun Kim?, Joon Lee?, Ki-Hwan Nam* and Chul-Soo Bae®
"2*School of Computer Engineering, Chosun University, Kwangju, Korea
Tel: +82-062-230-7757, Fax: +82-062-230-7381
3 Dept. of Information & Communication Engineering, Kwandong University, Kangwon, Korea
Tel: +82-033-670-3411, Fax: +82-033-671-2118
e-mail : jeong-jcj@hanmail.net ,ban9628 @hotmail.com, jlee@mail.chosun.ac kr,
keelight@hanmail.net , baecs@mail kwandong.ac kr

Abstract: Real-time(RT) object-oriented(OO) distributed
computing is a form of RT distributed computing realized
with a distributed computer system structured in the form
of an object network. Several approached proposed in
recent years for extending the conventional object
structuring scheme to suit RT applications, are briefly
reviewed. Then the approach named the TMO(Time-
triggered Message-triggered Object)structuring scheme was
formulated with the goal of instigating a quantum
productivity jump in the design of distributed time triggered
simulation. The TMO scheme is intended to facilitate the
pursuit of a new paradigm in designing distributed time
triggered simulation which is to realize real-time computing
with a common and general design style that does not
alienate the main-stream computing industry and yet to
allow system engineers to confidently produce certifiable
distributed time triggered simulation for safety-critical
applications.The TMO structuring scheme is a syntactically
simple but semantically powerful extension of the
conventional object structuring approached and as such, its
support tools can be based on various well-established OO
programming languages such as C++ and on ubiquitous
commercial RT operating system kernels. The Scheme
enables a great reduction of the designers efforts in
guaranteeing timely service capabilities of application
systems.

1. Introduction

One of the computer application fields which started
showing noticeable new growth trends in recent years is the
real-time(RT) computing application field. Future RT
computing must be realized in the form of a generalization
of the non-RT computing, rater than in a form looking like
an esoteric specialization. In other words, under a properly
established RT system engineering methodology, every
practically useful non-RT computer system must be
realizable by simply filling the time constraint specification
part with unconstrained default values.
The current reality in RT computing is far from this
desirable state and this is evidenced whether one looks at
the subfield of operating systems or that of software/system
engineering tolls. Another issue of growing importance is to
provide in the future an order-of-magniture higher degree
of assurance on the reliability of distributed time triggered
imulation products than what is provided today. To require
the system engineer to produce design-time guarantees for
imely service capabilities of various subsystems which will
ake the form of objects in OO system designs.

The major factor that has discouraged any attempt to do
his has been the use of software structuring approaches and

program execution mechanisms and modes which were
devised to maximize hardware utilization but at the cost of
increasing the difficulty of analyzing the temporal behavior
of the RT computation performed. Most concerns were
given to the issue of how to maximally utilize uniprocessor
hardware even at the cost of losing service quality
predictability. System engineers were more willing to
ignores a small percentage of peak-load situations which
can occur and can lead to excessively delayed response of
distributed time triggered simulation, instead of using more
hardware-consuming design approaches for producing
timeliness-guaranteed systems.

2. Framework for deadline handling

Fig. 1 depicts the relationship between a client and a server
component in a system composed of hard real time
components which are structured as distributed computing
objects. The client object in the middle of executing its
method, Methodl, calls for a service, Method 7 service,
from the server object. In order to complete its execution of
Method 1 within a certain target amount of time, the client
must obtain the service result from the server within a
certain deadline. This client's deadline is thus set without
consideration of the speed of the server. During the design
of the client object, the designer searches for a server object
with a guaranteed service time acceptable to it.

Client Object

Object Data Store

Metl{od 1%%-‘3".
.

\,
H \
L]

Server Object

‘\
h)

Deadline for resuit Domainof ~ Guaranteed Service
arrival communication time (server
(Client's Deadline) infrastructure ~ execution deadiine

Fig. 1. Client's deadline vs Server's guaranteed service time

Actually the designer must also consider the time to be
consumed by the communication infrastructure in judging
the acceptability of the guaranteed service time of a
candidate server object. In general, the following
relationship must be maintained.

Time consumed by communication infrastructure +
Guaranteed service time

< Maximum transmission

times imposed on

ITC-CSCC 2002

communication infrastructure +Guaranteed service
time < Deadline for result arrival- Call initiation instant

where both the deadline imposed by the client for result
arrival and the initiation instant of the client's remote
service call are expressed in terms of absolute real time, e.g.,
10am. There are three source from which a fault may arise
to cause a client's deadline to be violated. They are (s1) the
client object's resources which are basically node facility,
(s2) the communication infrastructure, and (s3) the server
object's resources which include not only node facility but
also the object code. The server is responsible to finish a
service within the guaranteed service time, while the client
is responsible for checking if the result comes back within
the client's deadline. Therefore, the client object is
responsible for checking the result of the actions by all the
resource involved, whereas the server object is responsible
for checking the result of the actions of (s3) only.

3. An overview of the TMO scheme
The TMO scheme was established in early 1990's with a
concrete syntactic structure and execution semantics for
economical reliable design and implementation of RT
systems. The TMO scheme is a general-style component
structuring scheme and supports design of all types of
components including distributable objects and
distributable non-RT objects within one general structure.
TMO is a natural and syntactically minor but semanticaily
powerful extension of the conventional object(s)[6].
As depicted in Fig. 2 the basic TMO structure consists of

four parts :
ODS-sec = object-data-store section : list of object-data-
store segments(ODSS's);

EAC-sec = environment access-capability section : list of
gate objects (to be discussed later) providing efficient call-
paths to remote object methods, logical communication
channels, and /O device interfaces;

SpM-sec = spontaneous-method section
spontaneous methods;

SvM-sec = service-method section.

list of

Major features are summarized below.

(a) Distributed computing component :
The TMO is a distributed computing component and
thus TMOs distributed over multiple nodes may interact
via remote method calls. To maximize the concurrency
in execution of client methods in one node and server
methods in the same node of different nodes, client
methods are allowed to make non-blocking types of
service requests to server methods.

(b) Clear separation between two types of methods :
The TMO may contain two types of methods, time-
triggered (TT-) methods (also called the spontaneous
methods of SpMs), which are clearly separated from the
conventional service methods (SvMs). The SpM
executions are triggered upon reaching of the RT clock
at specific values determined at the design time whereas
the SvM executions are triggered by service request
messages from clients. Moreover, actions to be taken at

real times which can be determined at the design time
can appear only in SpMs.

Fig. 1. Structure of the TMO.

(c) Basic concurrency constraint (BCC) :

This rule prevents potential conflicts between SpMs and
SvMs and reduces the designer's efforts in guaranteeing
timely service capabilities of TMOs. Basically,
activation of an SvM triggered by a message from an
external client is allowed only when potentially
conflicting SpM executions are not in place. An SvM is
allowed to execute only when and execution time-
window big enough for the SvM that does not overlap
with the execution time-window of any SpM that
accesses the same ODSSs to be accessed by the SvM,
opens up. However, the BCC does not stand in the way
of either concurrent SpM executions of concurrent SvM
executions.

(d) Guaranteed completion time and deadline :
The TMO incorporates deadlines in the most general
form. Basically, for output actions and method
completions of a TMO, the designer guarantees and
advertises execution time-windows bounded by start
time and completion times.

Triggering times for SpMs must be fully specified as
constants during the design time. Those real-time constants
appear in the first clause of an SpM specification called the
autonomous activation condition (AAC) section.

A provision is also made for making the AAC section of
an SpM contain only candidate triggering times, not actual
triggering times, so that a subset of the candidate triggering
times indicated in the AAC section may be dynamically
chosen for actual triggering. Such a dynamic selection
occurs when an SvM within the same TMO object requests
future executions of a specific SpM. Each AAC specifying
candidate triggering times rather than actual triggering
times has a name.

An underlying design philosophy of the TMO scheme is
that an RT computer system will always take the form of a
network of TMOs. The designer of each TMO provides a
guarantee of timely service capabilities of the object. The

ITC-CSCC 2002

designer does so by indicating the guaranteed execution
time-window for exery output produced by each SvM as
well as by each SpM executed on requests from the SvM
and the guaranteed completion time (GCT) for the SvM in
the specification of the SvM. Such specification of each
SvM is advertised to the designers of potential client
objects. Before determining the time-window specification,
the server object designer must convince himself/herself
that with the object execution engine (a composition of
hardware, node OS, and middleware) available, the server
object can be implemented to always execute the SvM such
that the output action is performed within the time-window.
The BCC contributes to major reduction of these burdens
imposed on the designer.

Middleware which together with node OSs and hardware
make up TMO execution engines, have been developed.

4. Multi-level Multi-step Design with the
TMO Structuring

First, the system engineering team describes the application
environment as the TMO Mini-Theater in Figure 2, without
the components enclosed by square brackets. The
components in brackets describes sensors (such as radar)
which do not yet exist because the system engineering team
has not decided which types to use.

The information kept in Mini-Theater is a composition of
the information kept in all the state descriptors within its
object data store. Here the object data store basically
consists of the state descriptors for the following three
environment components:

Mini-Theater
Access Capability (to other TMO's) None
Object Data Store

Mini-Theater Space (=Sky+Land Space)
Flying Airplane Group Container
Information(=Environment)

Flying Object Tracking information(=R eporter)
[Radarl onLand]

[Radar2onLand]

SpM '"Update the state descriptors in ODS"
Update the state of Targetin Land

[Update the state of Radarl on Land |

{ Update the state of Radar2 on Land]

[Update the state of F lying A irplane G roup Container]
[Update the state of Reporter on Land]

SvM

Receive Flying A irplane Information FomFAGC
Receive RequestFrom Radars

Receive Flying Airplane Information From ASPACE
Receive Reporter From Radars

Figure 2. High-level specification of the Mini Theater TMO.

-| Flying Airplane Group Container information
(Environment)
:l Flying Object Tracking Information(Reporter)

Mini-Theater Space(Sky and Land)

Corresponding to each of these state descriptors of
environment components is a spontaneous method that

Control Computer System In Reporter

Access Capability (to other TMOs)
Radar {Accept_spot_check_request)

Object Data Store

Radar data received, Flying airplane tracking information

SoM
SpM1 Radar Data Processing Step

update the flying object tracks”

<deadline :

QutpytSpegc :

<deadline :

- “ Process all the radar data received since the last processing cycle,

AAC : for T = from TMO_START + WARMUP_DELAY_SECS
to TMO_START + SYSTEM_LIFE_HOURS every PERIQO
start—during (T, T + START_WINDOW) finish~by T + DEADLINE
InputSpec : Radar data received in the object data store
xxx msec> Reflect changes onto the object data store,
i.e., Radar data received, Flying airplane tracking info.
xxy msec> Send spot-check radar requests to Radar if ~ ;

SvM
SyM1 Receive_from_Radar_on_Land (pos_list)

lnputSec -
position, time, predicted_time)
QutputSpec : <deadline :

in the object data store
SyM2 Accept Advice from ~ < Accept-via—— .>

< Accept-with-Delay_Bound—of ACCEPTANCE_DEADLINE
under MAX_REQUEST_RATE finish—-within EXECUTION_TIME_LIMIT>
-“ Receive from Radar_on_Land the information on all recent detections.”
InitiationCond : Other SvM1 invocations are not in place.
pos_list = array of (return_type (=scan_search/spot_check),

yyy msec> Deposit the radar data received

Figure 3. Intermediate Specification of the control computer system for Command Post.

ITC-CSCC 2002

periodically updates the state descriptor. Conceptually,
spontaneous methods in Mini-Theater TMO are activated
continuously and each of their executions is completed
instantly. Spontaneous methods thus represent continuous
state changes that occur naturally in the environment
components. Multiple spontaneous methods activated
simultaneously can be used to precisely represent the
natural parallelism that exists among environment
components.

The state descriptor for the theater space not only provides
geographical information about the theater but also
maintains the position of every moving component in the
Mini-Theater. This information is used to determine the
occurrences of collisions among components and to
recognize the departure of any component from the Mini-
Theater.

The Mini-Theater object is more than a mere description
of the application environment; it is also a simulation model.
To support simulation, the designers choose an activation
frequency for each spontaneous method such that it can be
supported by an object execution engine. The behavior of
the environment can be simulated. This practical simulation
is of course less accurate than the unexecutable description
based on continuous activation of spontaneous methods. In
general, the accuracy of a TMO-structured simulation is a
function of the chosen activation frequencies of
spontaneous methods.

Next the system engineering team decides which sensors

to deploy. Sensors include two radars located on land. Once
this is done, Mini-Theater can be expanded to incorporate
all the components enclosed by square brackets in Fiqure 2.
The object data store now contains the selected sensors.
The two radars loaded on Reporter are described in the state
descriptor for the Reporter.
Now the system engineering team should also deside how
to deploy the computer-based control system in the Mini-
Theater. The functions of the control system will be
determined by the control theory logic adopted. In this
experimental development, we deployed one control system
such as Reporter.
The Reporter contains a control system. Initially, the system
engineers proceed each control computer system out of
Reporter and generate single TMO specification, as shown
in Figure 3. The specification in Figure 3 shows a more
complete specification structure than shown in Figure 2.]t
has the autonomous activation condition for the
spontaneous method, the input and output specifications for
both the spontaneous and the service methods, and the
initiation condition for the service method.

-lThe input specification for a method describes the
actions of picking data during the execution of the
method such as receiving the data coming from the
external client in the form of call parameters, picking
data from the object data store, or picking data from the
input devices.

-‘ The output specification for a method describes the
action of sending data to other TMOs, sending data to
the output devices, and depositing data into the object
data store.

-|The initiation condition for the service method
describes when the service method execution can be
initiated after being called by a client. It is in a sense a
concurrency specification.

Now Mini-Theater is a network of three objects. The
system engineering team is now ready to give the computer
engineering team the specification structured in the form of
three TMOs, plus an overall specification of the type.

5. Conclusion

We believe that using this scheme for the uniform,
integrated design of complex real time systems and their
application environment simulators offers great potential in
significantly reducing the development costs and increasing
the dependability of the real time systems. Also, the goal of
the TMO structuring scheme, is to realize RT computing in
a general manner not alienating the main-stream computing
industry and yet enabling the system engineer to
confidently produce certifiable real time simulator for
safety-critical applications.

Although the potential of the TMO scheme has been amply
demonstrated, much further research efforts are needed to
make the TMO structuring technology easily accessible to
common practitioners. Further development of TMO
support middleware, especially those running on new-
generation RT kernels and multiprocessor hardware, is a
sensible topic for future research. Tools assisting the TMO
designer in the process of determining the response time to
be guaranteed are among the most important research topics.

References

(1] A. Attoui and M. Schneider, “An object-oriented model
for parallel and reactive systems”, Proc. IEEE CS 12th
Real-Time Systems Symp., pp. 84-93, 1991

{2] K.H.Kim etal., “A timeliness-guaranteed Kernel
model DREAM kemel and implementation techniques”,
Proc. 1995 Intl Workshop on Real-Time Computing
Systems and Applications (RTCSA 95), Tokyo, Japan, pp.
80-87.0ct. 1995

(3] K.H. Kim, C. Nguyen, and C. Park, “Real-time
simulation techniques based on the RTO.k object
modeling”, Proc. COMPSAC 96 (IEEE CS Software &
Applications Conf.), Seoul, Korea, pp. 176-183, August
1996

[41 K. H. Kim and C. Subbaraman, “Fault-tolerant real-
time objects”, Commun. ACM 75-82. 1997

{51 K.H. Kim, C. Subbaraman, and L. Bacellar, “Support
for RTO.k Object Structured Programming in C++”,
Control Engineering Practice 5 pp. 983-991, 1997

[6] K. H. Kim, “Object Structures for Real-Time Systems
and Simulators”, IEEE Computer 30 pp.62-70,1997

{71 H. Kopetz and K. H. Kim, “Temporal uncertainties in
interactions among real-time objects”, Proc. IEEE CS
9th Symp. On Reliable Distributed Systems, pp. 165-

174,0ct. 1990

ITC-CSCC 2002

