
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 1, Jan. 2020 201
Copyright ⓒ 2020 KSII

Efficient Parallel TLD on CPU-GPU Platform
for Real-Time Tracking

Zhaoyun Chen1,2, Dafei Huang3, Lei Luo1*, Mei Wen1,2 and Chunyuan Zhang1,2

1 College of Computer, National University of Defense Technology
Changsha, 410073 - China

[e-mail: chenzhaoyun@nudt.edu.cn, l.luo@nudt.edu.cn]
2 National Key Laboratory for Parallel and Distributed Processing

Changsha, 410073 – China
3 Southwest Electronics and Telecommunication Technology Research Institute

Chengdu, 610000 – China
*Corresponding author: Lei Luo

Received July 25, 2018; revised April 24, 2019; accepted June 22, 2019;

published January 31, 2020

Abstract

Trackers, especially long-term (LT) trackers, now have a more complex structure and more
intensive computation for nowadays’ endless pursuit of high accuracy and robustness.
However, computing efficiency of LT trackers cannot meet the real-time requirement in
various real application scenarios. Considering heterogeneous CPU-GPU platforms have been
more popular than ever, it is a challenge to exploit the computing capacity of heterogeneous
platform to improve the efficiency of LT trackers for real-time requirement. This paper
focuses on TLD, which is the first LT tracking framework, and proposes an efficient parallel
implementation based on OpenCL. In this paper, we firstly make an analysis of the TLD
tracker and then optimize the computing intensive kernels, including Fern Feature Extraction,
Fern Classification, NCC Calculation, Overlaps Calculation, Positive and Negative Samples
Extraction. Experimental results demonstrate that our efficient parallel TLD tracker
outperforms the original TLD, achieving the 3.92 speedup on CPU and GPU. Moreover, the
parallel TLD tracker can run 52.9 frames per second and meet the real-time requirement.

Keywords: TLD tracker, Real-Time, Heterogeneous Platform, OpenCL, Parallel
Optimizations

The authors gratefully acknowledge supports from National Key Research and Development program under
No.2016YFB1000400; National Nature Science Foundation of China under NSFC No. 61872377.

http://doi.org/10.3837/tiis.2020.01.012 ISSN : 1976-7277

202 Chen et al.: Efficient Parallel TLD on CPU-GPU Platform for Real-Time Tracking

 1. Introduction

Visual tracking, a remaining highly popular research area for more than thirty years, plays an
important role in numerous vision-based applications. Compared with short-term (ST)
trackers, long-term (LT) trackers receive far less attention. A major difference between ST and
LT trackers is that LT trackers can detect the target’s absence and re-appearance. Obviously,
LT tracking can be more adopted in various business-critical processes, such as automatic
navigation, traffic monitoring, video retrieval and human-computer interaction [1-3]. In these
domains, the important requirements of LT trackers are real time and support on diverse
platforms.

With the coming of big data era, video data has an explosive growth in the quantity and
quality, which leads to an endless pursuit of higher accuracy, robustness and efficiency for
trackers. Especially, in most real applications and cases, the requirement of real-time for LT
trackers imposes computational limitations. However, as shown in Table 1, most
state-of-the-arts trackers have more complex structures but lower computing speeds in order to
achieve higher accuracy and robustness. Therefore, a high-efficient implementation of LT
tracker which can meet the real-time requirement is meaningful and challenging.

Table 1. The specifications of the state-of-the-art trackers
Year Tracker Method Speed (FPS) Implementation

2015 MDNet [4] BB-regression + Convolution
Neural Network 1 Matlab, CPU+GPU

2016 SiamFC [5] Fully-conv. Siamese Network 12.6 Matlab, CPU+GPU

2016 C-COT [6] Discriminative Continuous
Conv. Operator 2.2 Matlab, CPU+GPU

2017 LSART [7] Kernelized Ridge Regression +
Convolution Neural Network 1 Matlab, CPU+GPU

2017 ECO [8] Conv. Operator + Compact
Generative Model 8.5 Matlab, CPU+GPU

2018 LADCF [9] Correlation Filter +
Convolution Neural Network 10.8 Matlab, CPU+GPU

Moreover, LT trackers are required to process on diverse platforms and devices in real
applications. Except the classic computing device CPU, heterogeneous platforms which
includes at least two kinds of devices (such as CPU + GPU) have been adopted in numerous
computing platforms from SoC (Qualcomm Snapdragon 835 [10]) to embedded system
(Nvidia Jetson [11]), and even to supercomputer (Tianhe-1A [12]). As shown in Tab. 1, there
are still tremendous optimization room left for the computing efficiency of the trackers which
are implemented by Matlab. Compared with other parallel programming languages and
models, such as OpenMP [13] on CPU and CUDA [14] on GPU, OpenCL [15] has the
advantage of cross-platform support and portability (the ability of programs to be run with
minimum modification on diverse devices). A LT tracker implemented by OpenCL can run on
diverse heterogeneous platforms and tap the potential of CPU and GPU by parallel techniques,
such as multicore parallelism, vector instruction and pipeline.

In this paper, we focus on a LT tracker Tracking-Learning-Detection (TLD) [16], which
firstly introduces independent learning and detection module into tracking. The unique
structure of TLD makes it more robust and suitable than other trackers in long-term tracking.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 1, January 2020 203

Most recent LT trackers [17-19] are inspired by or derived from the structure of TLD. These
researches improve the accuracy and robust of TLD, but ignore the computing speed and
efficiency. Therefore, a high efficient implementation of TLD based on OpenCL is the
guidance for the optimization of subsequent LT trackers. Meanwhile, the official version of
TLD, which is a serial implementation called OpenTLD [20], cannot make the best use of
computing capacity of heterogeneous platform. Therefore, in this paper, we make a
comprehensive analysis for the bottleneck of OpenTLD and propose an efficient parallel TLD
tracker based on OpenCL. The design and implementation of the efficient parallel TLD can
optimize the computing-intensive modules of OpenTLD, aiming to achieve real-time
requirement of tracking and high utilization of CPU and GPU.

As shown in Fig. 1, TLD is divided into three parts: tracking module, detection module and
learning module. Tracking module recursively tracks the target based on the location of the
previous frame. The learning module learns the appearance of the target. The detection module
is designed to locate the target when it re-enters after it gets out of the field of view. The
optimized modules of TLD include random fern and nearest neighbor classifier in detection
module, and sample extraction and detector updating in learning module. Moreover, the
OpenCL has provided the parallel support of LK optical flow in tracking module, which part is
not discussed in following sections. The experiments on a CPU-GPU platform demonstrate
that our parallel TLD can both improve the speedup of original OpenTLD by up to 3.92 and
meet the requirement of real-time.

Fig. 1. TLD is compose of three parts, tracking, detection and learning. Tracking module is

implemented by optical flow. Learning module includes sample extraction and detector updating.
Detection module is composed of random fern and nearest neighbor classifier. Most recent LT trackers

[17-19] are inspired by or derived from the structure of TLD.

The rest of this paper is organized as follows. Section 2 is the related work. Section 3
presents the overview and analysis of TLD tracker. We propose the efficient parallel designs
and optimizations for TLD modules in Section 4. In Section 5, a comprehensive evaluation
and analysis is performed. Finally, we draw a conclusion in Section 6.

2. Related Work
In this section, we briefly review the researches closely related to our work: (1) Recent LT
tracking algorithms, (2) Parallel designs and optimizations of visual tracking.

2.1 Recent LT Tracking Algorithms

204 Chen et al.: Efficient Parallel TLD on CPU-GPU Platform for Real-Time Tracking

Compared with ST trackers, LT trackers are required to handle situations in which the target
gets out of the field of view and re-enters. That means LT trackers can detect the target’s
absence and re-appearance. [18] extends the SiamRPN approach by introducing a simple but
effective local-to-global search region strategy. Meanwhile, the size of search region is
iteratively growing when tracking failed. [19] proposes a novel parallel tracking and verifying
(PTAV) framework for long-term tracking, by taking advantage of the ubiquity of
multi-thread techniques. Compared with these researches mentioned above, TLD is the first
tracker combining tracking, detection and learning into one. The subsequent LT trackers
[17-19] are inspired by the structure of TLD and further improve the accuracy and robustness
of tracking. Therefore, parallel implementation of TLD based on OpenCL is the guidance for
the optimization of subsequent LT trackers.

2.2 Parallel Designs and Optimizations of Visual Tracking
Recently, visual tracking has achieved a rapid development on accuracy and robustness rather
than speed. There are few work discussing the parallel implementation and optimizations of
trackers, especially on heterogeneous platform [21-24]. Research [23] proposes a
high-performance version H-TLD based on OpenMP and CUDA. H-TLD exploits multicores
on CPU and parallel units on GPU for load balance and decrease the transaction latency by
data-compression techniques. Another version of TLD has proposed in [24]. Research [24]
replaces the global searching with particle filtering and improves the tracking efficiency by the
overlapped execution of the detection module and tracking module. However, aforementioned
researches prefer to adopt CUDA as the programming model, which is a dedicated model on
GPU. Due to the more complex scenarios and diverse platforms, the cross-platform model
OpenCL can effectively decrease the difficulties of programming and transplantation.

3. Overview and Analysis of TLD Tracker
In this section, we first give an overview of TLD to show all the modules of the tracker. Then
we make an analysis for the compute-intensive bottleneck of TLD in more details based on
profiling to help with following optimization design.

Algorithm 1. Overview of TLD tracker

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 1, January 2020 205

TLD tracker is divided into three independent parts, tracking, detection and learning. The
algorithm overview of TLD tracker is shown in Algorithm. 1. Before the calculation of each
frame, TLD algorithm typically initializes to generate lots of bounding boxes. The generation
of bounding boxes is only related to the size of the frame and the initial size of the target.

The function Tracker() belongs to the tracking module, which adopts LK (Lucas-Kanade)
optical flow algorithm. Tracking module is charge of calculating the motion of the target
between contiguous frames and proposing a candidate. Generally, in visual tracking, it is
assumed that the motion changes between contiguous frames are subtle and the target is
always visible. However, when the target is occluded or out of sight, the tracking module
usually would fail and be unrecoverable. If the target position trackedBB is NULL, the
tracking module fails in current frame.

The function Detector(), representing detection module, includes two parts: Random Fern
and Nearest Neighbor Classifier. Random Fern first calculates the response value of each
bounding box. The response values reflect the probability that the bounding box contains the
target. The bounding boxes, whose response values are lower than the threshold, would be
discarded. Nearest Neighbor Classifier adopts the remaining bounding boxes as the input.
Each bounding box is compared with numerous positive and negative samples to compute a
confidence probability, which is related to the similarity to positive samples and the
non-similarity to negative samples. The similarity is measured by Normalized Cross
Correlation (NCC) [25]. Therefore, the bounding boxes whose confidence probabilities are
higher than the threshold are the output of the function Detector(). Furthermore, the function
Cluster() merges the output bounding boxes by clustering to decrease the number of outputs.

Learning module estimates the target position by the outputs of tracking and detection
module. When the tracking module fails and the detection module has only one output in
clusteredBBs, the bounding box is selected as the target position of current frame. Instead, if
the tracking module works, learning module compares and analyzes the trackedBB with
clusteredBBs. When the clusteredBBs have only one output bounding box and it has the higher
confidence than the trackedBB, the bounding box in clusteredBB is adopted as the target
position of current frame. Otherwise, learning module calculates the weighted average result
of clusteredBB and trackedBB. The weighted average bounding box is the target position.

Moreover, learning module decides the proper time to re-train the detector. The re-training
function Learn() only works when the tracking module works and the trackedBB can be
validated. There are two kinds of situations where the trackedBB is validated. In the first
situation, the trackedBB of current frame has the high enough confidence from the Nearest
Neighbor Classifier. However, in the second situation, the trackedBB of a certain history
frame has high confidence and the tracking module never fails from this history frame.

The learning module includes two main parts, collecting training samples and retraining
the detector. Before collecting samples, we calculate the overlaps between the currentBB and
the bounding boxes of current frame by the function Overlap(). The overlap in this paper is
defined by IoU (Intersection over Union). For Random Fern, the bounding boxes which have
the high response values and the low overlaps are selected as negative samples, called hard
negative mining. Moreover, the bounding boxes with high overlaps and response values are
adopted as positive samples through random rotating and resizing. For Nearest Neighbor
Classifier, the negative samples are selected from the bounding boxes with low overlaps in
detectedBBs. The bounding box in detectedBBs with the highest overlap is the only positive
sample. The retraining of Random Fern is the process of updating the weight of leaf node from
each random tree. The weight updating depends on the number of positive and negative

206 Chen et al.: Efficient Parallel TLD on CPU-GPU Platform for Real-Time Tracking

samples falling into the leaf nodes. Furthermore, the retraining of Nearest Neighbor Classifier
is to updating the sample set. The positive samples with low confidence and the negative
samples with high confidence are respectively added into the sample set for next NCC
calculation.

Fig. 2. Execution time distribution for all modules in TLD. The compute-intensive modules in TLD

include random fern, learning module, nearest neighbor classification.

In this paper, we adopt OpenTLD [20], which is the official open-source serial version of
TLD, as the baseline to analyze and optimize the compute-intensive bottleneck parts based on
OpenCL. As shown in Fig. 2, the compute-intensive parts in OpenTLD includes LK optical
flow, Random Fern, Nearest Neighbor Classifier and Learning Module. Others parts have
too few computations or are not appropriate to transplant on OpenCL. Due to that LK optical
flow has been supported by OpenCV based on OpenCL, tracking module is not discussed in
this paper. In next section, we will make a comprehensive analysis for each compute-intensive
module in OpenTLD and introduce our works about efficient parallel designs and
optimizations.

4. Efficient Parallel Designs and Optimizations for TLD
In order to improve the computing efficiency of TLD on heterogeneous platform of CPU and
GPU, it is important to design and optimize the compute-intensive modules, including
Random Fern, Nearest Neighbor Classifier and Learning Module. We adopt various parallel
techniques, such as exploiting the parallelism between calculations, and overlapping data
transferring with computation, in our proposed parallel TLD. The framework of our parallel
TLD based on OpenCL is shown in Fig. 3. In the following, we will introduce our high
efficient kernels based on OpenCL for these modules mentioned above in detail. Moreover,
some parts of TLD, which are not suitable for GPU, are still processed by host program. Our
proposed parallel TLD has good cross-platform support and portability on both CPU and
GPU.

Fig. 3. The framework of our parallel TLD based on OpenCL. Most compute-intensive modules are

implemented and optimized in kernel functions. Others are still processed in host program.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 1, January 2020 207

4.1 Random Fern Optimizations
Random Fern include fern feature extraction and fern classification, as shown in Fig. 4. Each
bounding box, as the input of Random Fern, corresponds to an image block in the frame. In
TLD, classification feature is generated by pixel comparison. More specifically, 13 pairs of
pixels are sampled based on the pre-assigned pattern from an image block. The grey values of
pixel pairs are used for comparison and the results are recorded by 0 or 1. Therefore, the
comparison results of 13 pairs of pixels can be represented by a binary vector, called fern
feature vector. Due to the diverse scales of the bounding boxes, TLD defines 10 kinds of
sampling patterns for each scale. Therefore, each bounding box is represented by 10 13-bit
fern feature vectors through feature extraction.

In order to classify the feature vectors, TLD builds a random tree for each kind of
sampling pattern, which corresponds to a kind of feature vector. All random trees compose of
a Random Forest. After that, each feature vector is classified in the corresponding random tree
and falls into a certain leaf node of the tree. Each leaf node of the random tree is given the
weight during the training process. And the weight represents the probability that the bounding
box contains the target. For each bounding box, the response value of the Random Fern is the
average of the 10 weights from the corresponding random trees.

Fig. 4. The overview of Random Fern. Random fern includes two parts: feature extraction and fern

classification.

4.1.1 Feature Extraction

The inputs of feature extraction include the image of the current frame, bounding boxes
array, the filtered bounding box index and the sampling patterns for pixel pairs. And the
outputs are the corresponding feature vectors of the bounding boxes.

Each bounding box is represented by a quintuple {BBx, BBy, BBw, BBh, scale_id}, which
are respectively the coordinate of the upper left corner, the width, the height and the scale
index of the bounding box. The quintuples of all candidate bounding boxes are organized as a
one-dimensional array grid, which is stored in a constant memory of OpenCL for kernels
calling. Meanwhile, the grey value of current image is also stored in a constant memory. The
filtered bounding box index, which is a one-dimensional array, points out the positions of the
filtered bounding boxes in the grid. Moreover, the sample patterns are also organized as a
one-dimensional array. Each sample pattern is represented by {x1, y1, x2, y2}, which are the
coordinates of the pixel pair in the bounding box. Considering that each scale of bounding
boxes has 10 kinds of sampling patterns and each sampling pattern has 13 pairs of pixels, the
array storing sampling patterns has {scale_num * 10 * 13 * 4} elements in total. In order to load
and store efficiently, we convert the storage order from { 1

1x , 1
1y , 1

2x , 1
2y ,, n

1x , n
1y , n

2x ,
n
2y } to { 1

1x , ..., n
1x , 1

1y , ..., n
1y , 1

2x , ..., n
2x , 1

2y , ..., n
2y }. Similar to the grid, the array of

sampling patterns is stored in a constant memory.

208 Chen et al.: Efficient Parallel TLD on CPU-GPU Platform for Real-Time Tracking

In order to optimize the process of feature extraction on OpenCL, we exploit the
parallelism of this process. In our work, each work item takes charge of the complete process
of a pair of pixels, which includes coordinates calculation, grey value extraction and
comparison, as shown in Fig. 5. A work group, which is composed of 130 work items,
generates 10 fern feature vectors of a bounding box. That is, the adjacent 13 work items
combine their results of grey value comparison to a fern feature vector and store it into global
memory. Moreover, the number of work groups is equals to the number of bounding boxes.
The corresponding kernel code is shown in Fig. 6.

Fig. 5. Fern Feature Extraction.

Fig. 6. Kernel of Fern Feature Extraction

4.1.2 Fern Classification
The 10 fern feature vectors of each bounding box are the input of the random forest to

achieve the response values. The outputs are the response values of the bounding boxes. As
illustrated in Fig. 6, a fern feature vector is stored as a 13-bit binary integer. Therefore, in order
to improve the efficiency of classification, it is not necessary to build a tree structure to check
each element of a feature vector. By contrast, an implementation of lookup table is adopted in
this paper. A 13-bit binary integer ranges from 1 to 213=8192. We build a table containing
8192 items instead of a tree structure. Each item stores a weight of a leaf node. Due to that the
random forest has 10 trees, we build 10 tables for matching. Afterwards, a fern feature vector
is taken as an index to look up in the corresponding table for the weight of the leaf node. For a
bounding box, 10 weights are obtained from looking up in the 10 tables by the associated fern
feature vectors. The sum of the weights is the response value of the bounding box. The kernel
code of classification is shown in Fig. 7.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 1, January 2020 209

Fig. 7. Kernel of Fern Classification

4.1.3 Overlapped Execution with Tracking Module

Because LK optical flow module is independent of Random Fern Classification, these two
parts can be overlapped executed. Fig. 8 illustrates the OpenCL host program of overlapped
execution. The numbers of filtered bounding boxes are different in each frame. The array
lengths of the filtered bounding box index, fern feature vector and response values are also
changed during tracking. When the tracking module finishes, the command queue would be
checked whether all commands in the queue have been executed. If not, the process would
block and wait. At last, the memory space is released for recreation in next frame.

Fig. 8. Overlapped Execution between LK optical flow and Random Fern

4.2 Parallel Implementations for Nearest Neighbor Classifier
After finishing the Random Fern, the response value of each bounding box has been calculated.
The bounding boxes, whose response values are higher than the threshold and rank among the
top 100, are adopted as the inputs of Nearest Neighbor Classifier to compute the confidence of
containing the target.

4.2.1 Algorithm Flow

The positive and negative samples are composed of the model of Nearest Neighbor
Classifier. Before the calculation of Nearest Neighbor Classification, an image block is
extracted as the input according to the corresponding bounding box. Then the image block is
compared with the positive and negative samples to calculate the similarities. We denote maxP
and maxN respectively as the maximum similarity in positive samples and negative samples.
And the confidence is denoted by NNConf. The confidence of the bounding box is calculated
as:

1-=
2 - -

maxNNNConf
maxP maxN

. (1)

210 Chen et al.: Efficient Parallel TLD on CPU-GPU Platform for Real-Time Tracking

It is clearly that maxP is positively correlated to the confidence and maxN is negatively
correlated to the confidence. As described in Algorithm 1, the similarity is defined by
Normalized Cross-Correlation (NCC). We denote f and t as two image blocks. f and t are
declared as two two-dimension float arrays which respectively store the greyscale images.
Each pixel in the greyscale image is represented by a float between 0 and 1. NCC of two image
blocks is calculated as

,

2 2
, ,

(,) (,)

(,) (,)
x y

x y x y

f x y t x y
NCC

f x y t x y
=

∑
∑ ∑

, (2)

where (,)x y is the horizontal and vertical coordinates. TLD makes a little modification for
the calculation of NCC. In order to avoid the interference of illumination, the average grey
value of the whole image block is subtracted from the grey value of each pixel. Meanwhile, in
order to ensure the normalization of NCC, the formula is modified as:

,

2 2
, ,

(,) (,)1 (1)
2 (,) (,)

x y

x y x y

f x y t x y
NCC

f x y t x y
= +

∑
∑ ∑

. (3)

4.2.2 Parallel Implementations of NCC Calculation
Nearest Neighbor Classification includes two stages. In first stage, all image blocks are

used to calculate NCC with each sample in the model. Then maxN, maxP and the confidence
NNConf of each image block are obtained in second stage. Due to numerous bounding boxes,
the number of NCC calculation is: the number of bounding boxes the number of samples× in
the model. Obviously, the first stage is computationally intensive. However, the number of
bounding box is no more than 100, which indicates the less computations of the second stage.
Moreover, considering reduction operations are not appropriate to optimize on OpenCL in the
second stage, we only focus on the parallel implementations of NCC calculation the first stage.
The second stage is still processed in the host program.

In OpenTLD, the size of image samples in the model is 15 15× . Similarly, an image block
extracted from the corresponding bounding box is resized to the same size. As illustrated in
Formula (3), the NCC results is not related to the storage mode and access order of the pixels
in an image block. Therefore, in order to exploit the parallelism in the Nearest Neighbor
Classification, we build a one-dimensional array patches to store continuously all pixel grey
values of all image blocks. In this array, the continuous 15 15 225× = elements denote an
input image block. Likewise, the positive and negative samples in the model are also stored in
a one-dimensional array p_n_samples, where the positive samples are the first and the
negative samples are the last. According to the number of the positive or negative samples, we
can identify that any element in the array belongs positive or negative. These two
one-dimensional arrays mentioned above are the input of NCC calculation.

We adopt three-dimensional index space in the parallel implementation of NCC
calculation. As shown in Fig. 9, each work group takes charge of the NCC calculation between
an image block and an image sample. The range of three dimensions for work groups is {1,
number of bounding boxes, number of samples}. Each work item is responsible to calculate
the product of the sum of squares between the same pixel position from two image blocks. The
range of three dimensions for work items is {225, 1, 1}. Therefore, for the whole
three-dimensional index space, the number of work items is
225 number of bounding boxes number of samples× × . According to the Formula (3), the results
of each pixel position should be accumulated. In this paper, we adopt a tree reduction to

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 1, January 2020 211

improve the efficiency of accumulation. However, the number of elements should be a power
of 2 in a tree reduction. We adjust the number of the work item in whole three-dimensional
index space to {256, number of bounding boxes, number of samples}. The kernel code for
NCC calculation is shown in Fig. 10.

Fig. 9. OpenCL index space for NCC Calculation.

Fig. 10. Kernel of NCC Calculation

4.3 Exploiting the Parallelism within Learning Modules
Based on an overall analysis of the output bounding boxes from tracking and detection module,
host program estimates the target position in the current frame. As mentioned in Section 3,
when the tracking module does not fail and the trackerBB is validated, the learning module is
called for updating the detection module. The learning module composes of two stages. In the
first stage, a few bounding boxes are selected as the positive and negative samples according
to the overlaps with the currentBB and the response values. And the second stage is a
retraining module, which is designed for updating the weights of leaf nodes in Random Fern
and the model in Nearest Neighbor Classifier. The number of bounding boxes in the first stage
is numerous. For example, a frame with size 320 240× can produce more than 60000

212 Chen et al.: Efficient Parallel TLD on CPU-GPU Platform for Real-Time Tracking

bounding boxes. The overlap and the response value calculations for all bounding boxes are
time-consuming and inefficiency. By contrast, the number of positive and negative samples is
few. Generally, the number of positive samples is about 10 and the negative samples are less
than the positive. Furthermore, the calculation of the second stage is not large and there are
most branch operations in the calculation. Therefore, in this section, we exploit the parallelism
in the first stage based on OpenCL and the second stage is still processed by host program.

4.3.1 Extraction of Negative Samples and Calculation of Overlaps

The negative samples are the incorrectly classified bounding boxes, which have the lower
overlaps than the threshold and high response values. In order to improve the efficiency, we
propose to extract the negative samples and calculate the overlaps in the same kernel. The
calculation of overlaps in this section refers to IoU.

Obviously, the inputs of this kernel include a one-dimension array grid_reorg which stores
all bounding boxes, the response values and the current target position currentBB. The outputs
include the negative samples set and the overlaps. Unlike the kernel of feature extraction, in
this section, each work item is charge of the calculation of overlap between a bounding box
and the currentBB. If the bounding boxes are stored in a one-dimension array organized as {...,
BBxi, BByi, BBwi, BBhi, scale_idi, ...} in Section 4.1.1, the contiguous work items access the
discontinuous memory when they load the same parameter of bounding boxes (for example,
BBxi). Therefore, we declare another one-dimension array grid_reorg to store all bounding
boxes as {BBx1, ... BBxn, BBy1, ..., BByn, BBw1, ... BBwn, BBh1, ... BBhn}. The reorganized
array grid_reorg substitutes for grid as the input of the kernel in this section. The response
values are reused from the results fern_responses in Section 4.1.2. Because the number of
negative samples is uncertain and the work items in different work groups cannot synchronize
in OpenCL, we adopt a tag array to record the output negative samples. The length of the tag
array is equal to the number of bounding boxes. An element in the tag array is labeled as 1
when the corresponding bounding box is selected as a negative sample. Otherwise, the
element is labeled as 0. To exploit the parallelism in extraction of negative samples and
calculation of overlaps, each work item extracts a bounding box from grid_reorg and
calculates the overlap between the bounding box and the currentBB. If the overlap is lower
than the threshold, the corresponding response value is checked to determine whether or not
the bounding box belongs to a negative sample. In order to improve the occupancy of OpenCL
devices, a work group includes 512 work items. The kernel code is shown in Fig. 11.

Fig. 11. Kernel of Overlap Calculation and Negative Samples Extraction

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 1, January 2020 213

4.3.2 Extraction of Positive Samples

In OpenTLD, the positive samples are top 10 bounding boxes with highest overlaps.
Therefore, the extraction of positive samples is a process to search the bounding boxes with
highest overlaps. And the process is a typical reduction which has less computation and more
branches. However, due to the large number of bounding boxes in the grid_reorg, exploiting
the parallelism in this process can significantly improve the utilization of memory bandwidth.

In order to search the top 10 bounding boxes with highest overlaps, the kernel would be
executed for 10 times and in each time, an index of a bounding box in the grid_reorg is
obtained. In the kernel, the number of work items is equals to the number of bounding boxes.
Each work item loads the overlap of a bounding box and compares with other work items in
the same work group. A work group contains 1024 work items and the index of the bounding
box with highest overlap in the work group is obtained by a tree reduction. The index is stored
into the global memory. Meanwhile, all work groups send own index to the host program. The
host program achieves the final index of the bounding box with highest overlap by reduction.
As shown in Fig. 12, the input of the kernel includes the array overlaps storing the overlaps
which are calculated by the kernel in previous part. The output includes the index of the
bounding box with the highest overlap in all work groups. The selected bounding box is added
into the positive sample set. In particular, in order not to get the same output after each
iteration, the overlap of the selected bounding box should be set to the minimum. Therefore, in
this kernel, the index of the bounding box top_BB_id_in_group, which is selected from
previous execution, is also adopted as an input. Before the current execution of the kernel, the
overlap is set to minimum according to the index. The kernel for the extraction of positive
samples is shown in Fig. 13.

Fig. 12. Positive Samples Extraction

Fig. 13. Kernel of Positive Samples Extraction

214 Chen et al.: Efficient Parallel TLD on CPU-GPU Platform for Real-Time Tracking

The array top_BB_id_in_group in global memory is passed back to the host program. The
host program re-executes the reduction to obtain the bounding box with the highest overlap.
The index of the selected bounding box is adopted as the input of the kernel for next execution
until 10 bounding boxes are picked out as the positive samples. As mentioned above, after
finishing the extraction of positive and negative samples, the re-training of detection module,
which is not appropriate for parallelizing on OpenCL, is processed by the host program. Thus
far, we have introduced the parallel implementations of OpenTLD based on OpenCL.

5. Evaluation and Analysis
In this section, we propose an exhaustive evaluation and analysis for our proposed parallel
TLD tracker. We will evaluate the performance of our proposed parallel TLD from three
levels. Firstly, a performance comparison is made between the original TLD and our
optimized TLD at kernel level, as shown in Section 5.2. Secondly, besides the computational
overhead, we take the data reorganization and communication overhead into consideration for
evaluating. Section 5.3 mainly shows the execution times of diverse implementations at
module level. At last, we evaluate the performance of our complete parallel TLD with some
baselines, including original TLD, HTLD and AATLD.

5.1 Experimental Setup
The experimental platform is based on a typical desktop platform, whose configurations are
summarized in Table 2. The test dataset we adopted is OTB50 [3]. The baselines compared
with our proposed parallel TLD include original OpenTLD, H-TLD [23] and AATLD [24].
Because this paper focuses on computing efficiency, we adopt execution time and speedup as
the metric. However, our proposed parallel TLD can achieve high accuracy as the same as
original OpenTLD. The tracking results on some image sequences with difficult attributes
(such as occlusion, fast motion, illumination variation, deformation, out-of-view) are shown in
Fig. 14.

Fig. 14. Screenshots of TLD tracking results. From top to bottom, the image sequences are Car,

Jumping, David and Panda.

Table 2. Platform Specifications

Hardware
CPU Intel i7-5500U (2 cores@2.4GHz)
GPU NVIDIA GTX 960M

Memory 16GB DDR3 1600MHz

Software

OS Ubuntu 16.04
Compiler gcc/g++ 4.8

OpenCL for CPU OpenCL 2.0, Intel OpenCL 1.2 Driver
OpenCL for GPU OpenCL 1.2, CUDA 8.0

OpenCV OpenCV 2.4.13

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 1, January 2020 215

5.2 Kernel Performance Analysis
We first evaluate the kernel performance separately in this part. The kernels optimized on
OpenCL include Fern Feature Extraction, Fern Classification, NCC Calculation, Overlap and
Negative Samples Calculation and Positive Samples Calculation.

Due to the portability of OpenCL, the aforementioned kernels can be executed on any
devices and the host program can specify the device for each kernel. We respectively record
the execution time of each kernel on CPU and GPU. In order to achieve the high accuracy of
the statistics, we adopt the event in OpenCL to record the time overhead. In particular, the time
overhead only contains the time of kernel execution, not including data transferring and kernel
startup, which are considered in next part. Each image sequence in test dataset has numerous
frames of images. The kernel execution time is defined as the sum of the overhead in each
frame. Similarly, in this section, we extract the program segments of the same function in
original OpenTLD as the baseline. The experiments are repeated for three times and the
averages of the statistics for all kernels and program segments are taken for comparison.

The experiment results on different image sequences has the same trend and properties.
Due to space limitations, we mainly show the results on the image sequence Car in OTB50.
The execution times of all kernels on diverse devices are shown in Table 3. GPU_OCL and
CPU_OCL respectively represent the execution times of the kernels we implemented and
optimized on GPU and CPU. ORG represents the overhead of the program segment in original
OpenTLD. Corresponding to the Table 3, the speedups based on ORG are shown in Table 4.
As can be seen from the results, the performances of our proposed parallel implementations on
CPU and GPU are significantly higher than that of original OpenTLD. Compared to other
kernels, Fern Feature Extraction and Overlap and Negative Samples Calculation have the
lower performance improvements. During overlap and negative samples calculation, most
bounding boxes have no overlap with currentBB and cannot perform efficient overlap
calculation. Therefore, the kernel of Overlap and Negative Samples Calculation has lower
parallelism. Fern Feature Extraction is not compute-intensive and has complex, irregular
memory accesses. Our proposed parallel implementation of this kernel cannot make the best
use of computing resources and memory bandwidth.

Table 3. Execution time of all kernels on diverse devices (ms) (Lower is better. Red fonts indicate the
best performance)

 FFE1 FC2 NCC3 ONSC4 PSC5
GPU_OCL 502.16 25.08 78.38 15.53 173.01
CPU_OCL 3735.66 281.53 400.39 96.86 990.07

ORG 24925.70 6664.20 7660.12 569.38 17189.30
1 Fern Feature Extraction
2 Fern Classification
3 NCC Calculation
4 Overlap and Negative Samples Calculation
5 Positive Samples Calculation

216 Chen et al.: Efficient Parallel TLD on CPU-GPU Platform for Real-Time Tracking

Table 4. Speedup of all kernels on diverse devices. The original TLD is adopted as baseline to calculate
the speedup. The values in () represent the GPU speedups compared to corresponding performance of
CPU_OCL. (Higher is better. Red fonts indicate the best performance)

 FFE FC NCC ONSC PSC
GPU_OCL 49.64

(7.44)
265.74
(11.23)

97.73
(5.11)

36.65
(6.24)

99.35
(5.72)

CPU_OCL 6.67 23.67 19.13 5.88 17.36
ORG 1.00 1.00 1.00 1.00 1.00

Furthermore, the kernels have higher performance on GPU than that on CPU. The kernel

NCC has the lowest speedup on GPU compared to CPU. The main calculation in NCC is tree
reduction, which is not appropriate for GPU. With the iteration of loops during reduction, the
stream processors participating into the calculation are fewer. Until the last loop, only one
work item is charge of accumulation. By contrast, the kernel Fern Classification has the
highest speedup on GPU compared to CPU. Due to that each bounding box has 10 fern feature
vectors to classify and the number of bounding boxes is large, the kernel Fern Classification
need numerous work items, which is appropriate for parallel execution on GPU.

5.3 Module Performance Analysis
The parallel optimization based on OpenCL can significantly improve the performance,

but lead to extra overhead. The main overhead results from data reorganization and
transferring. For example, Before the execution of NCC, the image blocks, the positive and
negative samples are reorganized into two one-dimensional arrays and transferred to the
computing devices. Beyond this, the extra overhead includes maintenance of the command
query and kernel startup.

In order to further evaluate the performance of our proposed kernels based on OpenCL, we
consider the extra overhead into the execution times and compare with the original OpenTLD.
Here we propose the comparison according to the three modules of the TLD structure:
 Random Fern: includes Fern Feature Extraction, Fern Classification, data

preprocessing and transferring in front and behind of the two kernels.
 Nearest Neighbor Classifier: includes NCC Calculation, confidence calculation and

data reorganization and transferring.
 Learning Module: includes Overlap Calculation and Negative Samples Calculation,

Positive Samples Calculation and data transferring between the two kernels.


Table 5. Execution time comparison for three modules of TLD (ms) (Lower is better. Red fonts indicate
the best performance. Blue fonts indicate the second-best ones.)

 Learning Module Nearest Neighbor
Classifier Random Fern

GPU_OCL 1787.53 3184.21 6741.54
CPU_OCL 1653.49 670.25 8242.86

ORG 17760.6 7861.42 37580.6

The reason for dividing three modules is that the overheads between kernels are easy to

classify into any part. Likewise, we adopt the corresponding program segments in original

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 1, January 2020 217

OpenTLD as the baseline. The evaluation results are shown in Table 5. As seen from the
evaluations, our proposed optimizations can still improve the performance of TLD even if the
extra overheads are considered. Meanwhile, the speedups in Table 2 slightly decrease
compared with that in Table 4. It indicates that the performance benefits dominate the
overheads for OpenCL parallelizing. For Random Fern, the kernel on GPU outperforms than
that on CPU. By contrast, for Nearest Neighbor Classifier, the kernel on CPU has better
performance. On one hand, the kernel of NCC Calculation has the lowest speedup on GPU
compared to CPU. On the other hand, when the kernel NCC Calculation is executed on GPU,
numerous image blocks, positive and negative samples are transferred to the GPU and the
NCC results are transferred back to the host program. The execution on CPU does not contains
these extra transferring. For the same reason, the performance of Learning Module on CPU is
better than that on GPU.

5.4 Evaluation for Complete Parallel TLD Tracker
In this section, we evaluate the performance of the complete parallel TLD tracker. For the
complete parallel TLD tracker, we further introduce the overlapped execution of Fern
Classification and LK optical flow mentioned in Section 4.1.3. Based on the evaluation of
previous part, we have concluded the most appropriate devices for each part of TLD. Except
the original TLD, we adopt the AATLD and H-TLD as baselines for comparison on our
experimental platform. Therefore, we evaluate the diverse implementations of TLD on
different devices. The diverse implementations are as follows:
 Original TLD. Original OpenTLD on CPU.
 CPU Implementation. All kernels we optimized in this paper are executed on CPU.
 GPU Implementation. All kernels we optimized in this paper are executed on GPU.
 CPU/GPU Implementation. The two kernels in Random Fern are executed on GPU.

The three kernels of Nearest Neighbor Classification and Learning Module are
executed on CPU.

 AATLD. A heterogeneous CPU-GPU TLD solution using OpenMP, MPI and CUDA
 H-TLD. A heterogeneous CPU-GPU TLD solution using OpenMP and CUDA.

Table 6. Execution time (ms) and FPS (frame per second) comparison for diveres implementations of
complete TLD tracker (Lower is better. Red fonts indicate the best performance. Blue fonts indicate the
second-best ones.)

Trackers Original
TLD CPU Imp. GPU Imp. CPU/GPU

Imp.
 AATLD H-TLD

Execution
Time 69953.2 18581.5 19842.2 17841.7 32193.9 25530.4

FPS 13.49 50.79 47.57 52.90 29.32 36.97

The evaluation results for different implementations of TLD are shown in Table 6. As seen

from the evaluation, CPU implementation outperforms than GPU implementation.
Corresponding to the conclusions of previous section, the benefits of Nearest Neighbor
Classification and Learning Module on CPU dominates that of Random Fern on GPU. For
CPU/GPU implementation, each kernel is executed on the most appropriate device and
achieves the best performance. Compared with original OpenTLD, AATLD and H-TLD, the
CPU/GPU implementation outperforms and has achieved the speedup 3.92 than original

218 Chen et al.: Efficient Parallel TLD on CPU-GPU Platform for Real-Time Tracking

OpenTLD. Moreover, our proposed three parallel TLD implementations can meet the
real-time requirement and the CPU/GPU implementation runs at 52.9 frames per second.

6. Conclusion
TLD, which is a long-term tracking framework, has practicability and wide application
prospects on heterogeneous platforms. In order to improve the computing efficiency, in this
paper, we propose an efficient parallel TLD tracker based on OpenCL. We focus on parallel
designs and optimizations for computing-intensive modules in TLD, including Fern Feature
Extraction, Fern Classification, NCC Calculation, Overlaps Calculation, Positive and
Negative Samples Extraction. Moreover, we introduce the overlapped execution between
tracking module and detection module. A comprehensive evaluation demonstrates that the
parallel kernels we proposed can improve the computing efficiency than original TLD. Even if
considering the overhead introduced by OpenCL optimizations, our complete parallel TLD
tracker has achieved a 3.92 speedup than original TLD on heterogeneous platform and meets
the real-time requirement.

References
[1] D. Lee, J. Sim and C. Kim, “Visual tracking using pertinent patch selection and masking,” in Proc.

of the IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), pp. 3486-3493, June
23-28, 2014. Article (CrossRef Link).

[2] A. Yilmaz, O. Javed and M. Shah, “Object tracking: A survey,” ACM computing surveys (CSUR),
vol. 38, no. 4, pp. 13, 2006. Article(CrossRefLink).

[3] Y. Wu, J. Lim and M. Yang, “Online object tracking: A Benchmark,” in Proc. of the IEEE Conf. on
Computer Vision and Pattern Recognition (CVPR), pp. 2411-2418, June 23-28, 2013.
Article (CrossRef Link).

[4] H. Nam and B. Han, “Learning multi-domain convolutional neural networks for visual tracking,”
in Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), pp. 4293-4302,
June 27-30, 2016. Article (CrossRef Link).

[5] L. Bertinetto, J. Valmadre, J. Henriques, A. Vedaldi and P. Torr, “Fully-convolutional Siamese
Networks for Object Tracking,” in Proc. of Workshop of the European Conf. on Computer Vision
(ECCV), pp. 850-865, October 15-16, 2016. Article (CrossRef Link).

[6] M. Danelljan, A. Robinsson, F. Khan and M. Felsberg, “Beyond correlation filters: Learning
continuous convolution operators for visual tracking,” in Proc. of the European Conf. on
Computer Vision (ECCV), pp. 472-488, October 11-14, 2016. Article (CrossRef Link).

[7] C. Sun, H. Lu and M. Yang, “Learning Spatial-Aware Regressions for Visual Tracking,” in Proc.
of the IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), pp. 8962-8970, June
18-22, 2018. Article (CrossRef Link).

[8] M. Danelljan, G. Bhat, F. Khan and M. Felsberg, “Eco: Efficient convolution operators for
tracking,” in Proc. of IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), pp.
6931–6939, July 21-26, 2017. Article (CrossRef Link).

[9] T. Xu, Z. Feng, X. Wu and Kittler J, “Learning Adaptive Discriminative Correlation Filters via
Temporal Consistency preserving Spatial Feature Selection for Robust Visual Tracking,” in
arXiv:1807.11348, 2018.

[10] Snapdragon 835 mobile platform, 2017.
https://www.qualcomm.com/products/snapdragon/processors/835

[11] J. E. Stone, M. J. Hallock, J. C. Phillips, J. R. Peterson, Z. Luthey-Schulten and K. Schulten,
“Evaluation of emerging energy-efficient heterogeneous computing platforms for biomolecular
and cellular simulation workloads,” in Proc. of Parallel and Distributed Processing Symposium
Workshops, pp. 89-100, May 23-27, 2016. Article (CrossRef Link).

http://dx.doi.org/doi:10.1109/cvpr.2014.446
http://dx.doi.org/doi:10.1145/1177352.1177355
http://dx.doi.org/doi:10.1109/cvpr.2013.312
http://dx.doi.org/doi:10.1109/cvpr.2016.465
http://dx.doi.org/doi:10.1007/978-3-319-48881-3_56
http://dx.doi.org/doi:10.1007/978-3-319-46454-1_29
http://dx.doi.org/doi:10.1109/cvpr.2018.00934
http://dx.doi.org/doi:10.1109/CVPR.2017.733
https://www.qualcomm.com/products/snapdragon/processors/835
http://dx.doi.org/doi:10.1109/IPDPSW.2016.130

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 1, January 2020 219

[12] TOP500, “Top500 lists: November 2010,” 2010.
https://www.top500.org/lists/2010/11/highlights

[13] Open Multi-Processing, 2015. http://www.openmp.org
[14] NVIDIA Corporation, “CUDA C Programming Guide,” 2012.

http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programm
ing_Guide.pdf

[15] A. Munshi, “The OpenCL Specification,” 2011. http://www.khronos.org/opencl
[16] Z. Kalal, K. Mikolajczyk and J. Matas, “Tracking-learning-detection,” IEEE transactions on

pattern analysis and machine intelligence (PAMI), vol. 34, no. 7, pp. 1409-1422, 2012.
Article (CrossRef Link).

[17] C. Ma, X. Yang, C. Zhang and M. Yang, “Long-term correlation tracking,” in Proc. of IEEE Conf.
on Computer Vision and Pattern Recognition (CVPR), pp. 5388-5396, June 7-12, 2015.
Article (CrossRef Link).

[18] Z. Zhu, Q. Wang, B. Li, W. Wu, J. Yan and W. Hu, “Distractor-aware siamese networks for visual
object tracking,” in Proc. of the European Conf. on Computer Vision (ECCV), pp. 103-119,
September 8-14, 2018. Article (CrossRef Link).

[19] H. Fan and H. Ling, “Parallel tracking and verifying: A framework for real-time and high accuracy
visual tracking,” in Proc. of IEEE International Conf. on Computer Vision (ICCV), pp. 5487-5495,
October 22-29, 2017. Article (CrossRef Link).

[20] Z. Kalal, “OpenTLD,” 2011. https://github.com/zk00006/OpenTLD
[21] D. Concha, R. Cabido, J. J. Pantrigo and A. Montemayor, “Performance evaluation of a 3D

multi-view-based particle filter for visual object tracking using GPUs and multicore CPUs,”
Journal of Real-Time Image Processing, vol. 15, no. 2, pp. 309-327, 2018.
Article (CrossRef Link).

[22] J. A. Brown and D. W. Capson, “A framework for 3D model-based visual tracking using a
GPU-accelerated particle filter,” IEEE transactions on visualization and computer graphics, vol.
18, no. 1, pp. 68-80, 2012. Article (CrossRef Link).

[23] I. Gurcan and A. Temizel, “Heterogeneous CPU-GPU tracking-learning-detection (H-TLD) for
real-time object tracking,” Journal of Real-Time Image Processing, vol. 16, no. 2, pp. 339-353,
2019. Article (CrossRef Link).

[24] P. Guo, X. Li, S. Ding, Z. Tian and X. Zhang, “Adaptive and accelerated
tracking-learning-detection,” in Proc. of International Symposium on Photoelectronic Detection
and Imaging, June 25-27, 2013. Article (CrossRef Link).

[25] J. P. Lewis, “Fast normalized cross-correlation,” Circuits Systems and Signal Processing, vol. 28,
no. 6, pp. 819-843, 2009. Article (CrossRef Link).

https://www.top500.org/lists/2010/11/highlights
http://www.openmp.org/
http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_Guide.pdf
http://www.khronos.org/opencl
http://dx.doi.org/doi:10.1109/TPAMI.2011.239
http://dx.doi.org/doi:10.1109/CVPR.2015.7299177
http://dx.doi.org/doi:10.1007/978-3-030-01240-3_7
http://dx.doi.org/doi:10.1109/iccv.2017.585
https://github.com/zk00006/OpenTLD
http://dx.doi.org/doi:10.1007/s11554-014-0483-1
http://dx.doi.org/doi:10.1109/TVCG.2011.34
http://dx.doi.org/doi:10.1007/s11554-015-0538-y
http://dx.doi.org/doi:10.1117/12.2034977
http://dx.doi.org/doi:10.1007/s00034-009-9130-7

220 Chen et al.: Efficient Parallel TLD on CPU-GPU Platform for Real-Time Tracking

Zhaoyun Chen is a PhD candidate of College of computer, National University of Defense
of Technology. He earned his master’s degree in computer science and technology in 2015
from NUDT. His research interests are in the areas of system architecture and computer
vision. He has authored and co-authored over 10 publications, including IJCV, INFOCOM,
DATE, BMVC, ICIP, HPCC, and FITEE.

Dafei Huang is a research assistant in Southwest Electronics and Telecommunication
Technology Research Institute. He received his Ph.D. in 2017. His research interests include
parallel programming, compiler optimization, rumtime design and computer vision.

Lei Luo received his B.S., M.S., and Ph.D. degrees from College of Computer, National
University of Defense Technology, China, in 2006, 2008, and 2013, respectively. He joined
College of Computer, National University of Defense Technology, as a Lecturer, in 2013. His
research interests include computer vision, system software, and machine learning.

Mei Wen is currently a professor at the Computer College at the National University of
Defense Technology, China. She received her BS, MS, and PhD in Computer Science and
Technology from the National University of Defense Technology in 1995, 1999 and 2006,
respectively. Her research interests include computer architecture, parallel programming, and
scientific computing.

Chunyuan Zhang is a professor at the Computer College at the National University of
Defense Technology, China. He received his BS, MS, and PhD in Computer Science and
Technology from the National University of Defense Technology, China, in 1985, 1990, and
1996, respectively. He is the director of a series of research projects including National
Natural Science Foundation projects of China. His research interests include
computer architecture, parallel programming, low power design, embedded
systems, media processing, and scientific computing.

	Zhaoyun Chen1,2, Dafei Huang3, Lei Luo1*, Mei Wen1,2 and Chunyuan Zhang1,2
	3 Southwest Electronics and Telecommunication Technology Research Institute
	Chengdu, 610000 – China
	*Corresponding author: Lei Luo
	Abstract
	Fig. 1. TLD is compose of three parts, tracking, detection and learning. Tracking module is implemented by optical flow. Learning module includes sample extraction and detector updating. Detection module is composed of random fern and nearest neighbor...
	2.1 Recent LT Tracking Algorithms
	2.2 Parallel Designs and Optimizations of Visual Tracking
	Fig. 2. Execution time distribution for all modules in TLD. The compute-intensive modules in TLD include random fern, learning module, nearest neighbor classification.
	4.1 Random Fern Optimizations
	Fig. 4. The overview of Random Fern. Random fern includes two parts: feature extraction and fern classification.
	Fig. 5. Fern Feature Extraction.
	4.2 Parallel Implementations for Nearest Neighbor Classifier
	Fig. 9. OpenCL index space for NCC Calculation.
	4.3 Exploiting the Parallelism within Learning Modules
	Fig. 12. Positive Samples Extraction
	Fig. 13. Kernel of Positive Samples Extraction
	5.1 Experimental Setup
	Fig. 14. Screenshots of TLD tracking results. From top to bottom, the image sequences are Car, Jumping, David and Panda.
	Table 2. Platform Specifications
	5.2 Kernel Performance Analysis
	Table 3. Execution time of all kernels on diverse devices (ms) (Lower is better. Red fonts indicate the best performance)
	Table 4. Speedup of all kernels on diverse devices. The original TLD is adopted as baseline to calculate the speedup. The values in () represent the GPU speedups compared to corresponding performance of CPU_OCL. (Higher is better. Red fonts indicate t...
	5.3 Module Performance Analysis
	Table 5. Execution time comparison for three modules of TLD (ms) (Lower is better. Red fonts indicate the best performance. Blue fonts indicate the second-best ones.)
	5.4 Evaluation for Complete Parallel TLD Tracker
	Table 6. Execution time (ms) and FPS (frame per second) comparison for diveres implementations of complete TLD tracker (Lower is better. Red fonts indicate the best performance. Blue fonts indicate the second-best ones.)
	References

