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Abstract 
 

Trackers, especially long-term (LT) trackers, now have a more complex structure and more 
intensive computation for nowadays’ endless pursuit of high accuracy and robustness. 
However, computing efficiency of LT trackers cannot meet the real-time requirement in 
various real application scenarios. Considering heterogeneous CPU-GPU platforms have been 
more popular than ever, it is a challenge to exploit the computing capacity of heterogeneous 
platform to improve the efficiency of LT trackers for real-time requirement. This paper 
focuses on TLD, which is the first LT tracking framework, and proposes an efficient parallel 
implementation based on OpenCL. In this paper, we firstly make an analysis of the TLD 
tracker and then optimize the computing intensive kernels, including Fern Feature Extraction, 
Fern Classification, NCC Calculation, Overlaps Calculation, Positive and Negative Samples 
Extraction. Experimental results demonstrate that our efficient parallel TLD tracker 
outperforms the original TLD, achieving the 3.92 speedup on CPU and GPU. Moreover, the 
parallel TLD tracker can run 52.9 frames per second and meet the real-time requirement. 
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 1. Introduction 

Visual tracking, a remaining highly popular research area for more than thirty years, plays an 
important role in numerous vision-based applications. Compared with short-term (ST) 
trackers, long-term (LT) trackers receive far less attention. A major difference between ST and 
LT trackers is that LT trackers can detect the target’s absence and re-appearance. Obviously, 
LT tracking can be more adopted in various business-critical processes, such as automatic 
navigation, traffic monitoring, video retrieval and human-computer interaction [1-3]. In these 
domains, the important requirements of LT trackers are real time and support on diverse 
platforms. 

With the coming of big data era, video data has an explosive growth in the quantity and 
quality, which leads to an endless pursuit of higher accuracy, robustness and efficiency for 
trackers. Especially, in most real applications and cases, the requirement of real-time for LT 
trackers imposes computational limitations. However, as shown in Table 1, most 
state-of-the-arts trackers have more complex structures but lower computing speeds in order to 
achieve higher accuracy and robustness. Therefore, a high-efficient implementation of LT 
tracker which can meet the real-time requirement is meaningful and challenging. 

 

Table 1. The specifications of the state-of-the-art trackers 
Year Tracker Method Speed (FPS) Implementation 

2015 MDNet [4] BB-regression + Convolution 
Neural Network 1 Matlab, CPU+GPU 

2016 SiamFC [5] Fully-conv. Siamese Network 12.6 Matlab, CPU+GPU 

2016 C-COT [6] Discriminative Continuous 
Conv. Operator 2.2 Matlab, CPU+GPU 

2017 LSART [7] Kernelized Ridge Regression + 
Convolution Neural Network 1 Matlab, CPU+GPU 

2017 ECO [8] Conv. Operator + Compact 
Generative Model 8.5 Matlab, CPU+GPU 

2018 LADCF [9] Correlation Filter + 
Convolution Neural Network 10.8 Matlab, CPU+GPU 

 

Moreover, LT trackers are required to process on diverse platforms and devices in real 
applications. Except the classic computing device CPU, heterogeneous platforms which 
includes at least two kinds of devices (such as CPU + GPU) have been adopted in numerous 
computing platforms from SoC (Qualcomm Snapdragon 835 [10]) to embedded system 
(Nvidia Jetson [11]), and even to supercomputer (Tianhe-1A [12]). As shown in Tab. 1, there 
are still tremendous optimization room left for the computing efficiency of the trackers which 
are implemented by Matlab. Compared with other parallel programming languages and 
models, such as OpenMP [13] on CPU and CUDA [14] on GPU, OpenCL [15] has the 
advantage of cross-platform support and portability (the ability of programs to be run with 
minimum modification on diverse devices). A LT tracker implemented by OpenCL can run on 
diverse heterogeneous platforms and tap the potential of CPU and GPU by parallel techniques, 
such as multicore parallelism, vector instruction and pipeline.  

In this paper, we focus on a LT tracker Tracking-Learning-Detection (TLD) [16], which 
firstly introduces independent learning and detection module into tracking. The unique 
structure of TLD makes it more robust and suitable than other trackers in long-term tracking. 
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Most recent LT trackers [17-19] are inspired by or derived from the structure of TLD. These 
researches improve the accuracy and robust of TLD, but ignore the computing speed and 
efficiency. Therefore, a high efficient implementation of TLD based on OpenCL is the 
guidance for the optimization of subsequent LT trackers. Meanwhile, the official version of 
TLD, which is a serial implementation called OpenTLD [20], cannot make the best use of 
computing capacity of heterogeneous platform. Therefore, in this paper, we make a 
comprehensive analysis for the bottleneck of OpenTLD and propose an efficient parallel TLD 
tracker based on OpenCL. The design and implementation of the efficient parallel TLD can 
optimize the computing-intensive modules of OpenTLD, aiming to achieve real-time 
requirement of tracking and high utilization of CPU and GPU.  

As shown in Fig. 1, TLD is divided into three parts: tracking module, detection module and 
learning module. Tracking module recursively tracks the target based on the location of the 
previous frame. The learning module learns the appearance of the target. The detection module 
is designed to locate the target when it re-enters after it gets out of the field of view. The 
optimized modules of TLD include random fern and nearest neighbor classifier in detection 
module, and sample extraction and detector updating in learning module. Moreover, the 
OpenCL has provided the parallel support of LK optical flow in tracking module, which part is 
not discussed in following sections. The experiments on a CPU-GPU platform demonstrate 
that our parallel TLD can both improve the speedup of original OpenTLD by up to 3.92 and 
meet the requirement of real-time.  

 
Fig. 1. TLD is compose of three parts, tracking, detection and learning. Tracking module is 

implemented by optical flow. Learning module includes sample extraction and detector updating. 
Detection module is composed of random fern and nearest neighbor classifier. Most recent LT trackers 

[17-19] are inspired by or derived from the structure of TLD. 
 

The rest of this paper is organized as follows. Section 2 is the related work. Section 3 
presents the overview and analysis of TLD tracker. We propose the efficient parallel designs 
and optimizations for TLD modules in Section 4. In Section 5, a comprehensive evaluation 
and analysis is performed. Finally, we draw a conclusion in Section 6. 

2. Related Work 
In this section, we briefly review the researches closely related to our work: (1) Recent LT 
tracking algorithms, (2) Parallel designs and optimizations of visual tracking. 

2.1 Recent LT Tracking Algorithms 
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Compared with ST trackers, LT trackers are required to handle situations in which the target 
gets out of the field of view and re-enters. That means LT trackers can detect the target’s 
absence and re-appearance. [18] extends the SiamRPN approach by introducing a simple but 
effective local-to-global search region strategy. Meanwhile, the size of search region is 
iteratively growing when tracking failed. [19] proposes a novel parallel tracking and verifying 
(PTAV) framework for long-term tracking, by taking advantage of the ubiquity of 
multi-thread techniques. Compared with these researches mentioned above, TLD is the first 
tracker combining tracking, detection and learning into one. The subsequent LT trackers 
[17-19] are inspired by the structure of TLD and further improve the accuracy and robustness 
of tracking. Therefore, parallel implementation of TLD based on OpenCL is the guidance for 
the optimization of subsequent LT trackers. 

2.2 Parallel Designs and Optimizations of Visual Tracking 
Recently, visual tracking has achieved a rapid development on accuracy and robustness rather 
than speed. There are few work discussing the parallel implementation and optimizations of 
trackers, especially on heterogeneous platform [21-24]. Research [23] proposes a 
high-performance version H-TLD based on OpenMP and CUDA. H-TLD exploits multicores 
on CPU and parallel units on GPU for load balance and decrease the transaction latency by 
data-compression techniques. Another version of TLD has proposed in [24]. Research [24] 
replaces the global searching with particle filtering and improves the tracking efficiency by the 
overlapped execution of the detection module and tracking module. However, aforementioned 
researches prefer to adopt CUDA as the programming model, which is a dedicated model on 
GPU. Due to the more complex scenarios and diverse platforms, the cross-platform model 
OpenCL can effectively decrease the difficulties of programming and transplantation. 

3. Overview and Analysis of TLD Tracker 
In this section, we first give an overview of TLD to show all the modules of the tracker. Then 
we make an analysis for the compute-intensive bottleneck of TLD in more details based on 
profiling to help with following optimization design.  
 

Algorithm 1. Overview of TLD tracker 
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TLD tracker is divided into three independent parts, tracking, detection and learning. The 
algorithm overview of TLD tracker is shown in Algorithm. 1. Before the calculation of each 
frame, TLD algorithm typically initializes to generate lots of bounding boxes. The generation 
of bounding boxes is only related to the size of the frame and the initial size of the target.  

The function Tracker() belongs to the tracking module, which adopts LK (Lucas-Kanade) 
optical flow algorithm. Tracking module is charge of calculating the motion of the target 
between contiguous frames and proposing a candidate. Generally, in visual tracking, it is 
assumed that the motion changes between contiguous frames are subtle and the target is 
always visible. However, when the target is occluded or out of sight, the tracking module 
usually would fail and be unrecoverable. If the target position trackedBB is NULL, the 
tracking module fails in current frame.  

The function Detector(), representing detection module, includes two parts: Random Fern 
and Nearest Neighbor Classifier. Random Fern first calculates the response value of each 
bounding box. The response values reflect the probability that the bounding box contains the 
target. The bounding boxes, whose response values are lower than the threshold, would be 
discarded. Nearest Neighbor Classifier adopts the remaining bounding boxes as the input. 
Each bounding box is compared with numerous positive and negative samples to compute a 
confidence probability, which is related to the similarity to positive samples and the 
non-similarity to negative samples. The similarity is measured by Normalized Cross 
Correlation (NCC) [25]. Therefore, the bounding boxes whose confidence probabilities are 
higher than the threshold are the output of the function Detector(). Furthermore, the function 
Cluster() merges the output bounding boxes by clustering to decrease the number of outputs. 

Learning module estimates the target position by the outputs of tracking and detection 
module. When the tracking module fails and the detection module has only one output in 
clusteredBBs, the bounding box is selected as the target position of current frame. Instead, if 
the tracking module works, learning module compares and analyzes the trackedBB with 
clusteredBBs. When the clusteredBBs have only one output bounding box and it has the higher 
confidence than the trackedBB, the bounding box in clusteredBB is adopted as the target 
position of current frame. Otherwise, learning module calculates the weighted average result 
of clusteredBB and trackedBB. The weighted average bounding box is the target position. 

Moreover, learning module decides the proper time to re-train the detector. The re-training 
function Learn() only works when the tracking module works and the trackedBB can be 
validated. There are two kinds of situations where the trackedBB is validated. In the first 
situation, the trackedBB of current frame has the high enough confidence from the Nearest 
Neighbor Classifier. However, in the second situation, the trackedBB of a certain history 
frame has high confidence and the tracking module never fails from this history frame.  

The learning module includes two main parts, collecting training samples and retraining 
the detector. Before collecting samples, we calculate the overlaps between the currentBB and 
the bounding boxes of current frame by the function Overlap(). The overlap in this paper is 
defined by IoU (Intersection over Union). For Random Fern, the bounding boxes which have 
the high response values and the low overlaps are selected as negative samples, called hard 
negative mining. Moreover, the bounding boxes with high overlaps and response values are 
adopted as positive samples through random rotating and resizing. For Nearest Neighbor 
Classifier, the negative samples are selected from the bounding boxes with low overlaps in 
detectedBBs. The bounding box in detectedBBs with the highest overlap is the only positive 
sample. The retraining of Random Fern is the process of updating the weight of leaf node from 
each random tree. The weight updating depends on the number of positive and negative 
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samples falling into the leaf nodes. Furthermore, the retraining of Nearest Neighbor Classifier 
is to updating the sample set. The positive samples with low confidence and the negative 
samples with high confidence are respectively added into the sample set for next NCC 
calculation. 

 
Fig. 2. Execution time distribution for all modules in TLD. The compute-intensive modules in TLD 

include random fern, learning module, nearest neighbor classification. 
 

In this paper, we adopt OpenTLD [20], which is the official open-source serial version of 
TLD, as the baseline to analyze and optimize the compute-intensive bottleneck parts based on 
OpenCL. As shown in Fig. 2, the compute-intensive parts in OpenTLD includes LK optical 
flow, Random Fern, Nearest Neighbor Classifier and Learning Module. Others parts have 
too few computations or are not appropriate to transplant on OpenCL. Due to that LK optical 
flow has been supported by OpenCV based on OpenCL, tracking module is not discussed in 
this paper. In next section, we will make a comprehensive analysis for each compute-intensive 
module in OpenTLD and introduce our works about efficient parallel designs and 
optimizations. 

4. Efficient Parallel Designs and Optimizations for TLD 
In order to improve the computing efficiency of TLD on heterogeneous platform of CPU and 
GPU, it is important to design and optimize the compute-intensive modules, including 
Random Fern, Nearest Neighbor Classifier and Learning Module. We adopt various parallel 
techniques, such as exploiting the parallelism between calculations, and overlapping data 
transferring with computation, in our proposed parallel TLD. The framework of our parallel 
TLD based on OpenCL is shown in Fig. 3. In the following, we will introduce our high 
efficient kernels based on OpenCL for these modules mentioned above in detail. Moreover, 
some parts of TLD, which are not suitable for GPU, are still processed by host program. Our 
proposed parallel TLD has good cross-platform support and portability on both CPU and 
GPU.  
 

 
Fig. 3. The framework of our parallel TLD based on OpenCL. Most compute-intensive modules are 

implemented and optimized in kernel functions. Others are still processed in host program. 
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4.1 Random Fern Optimizations 
Random Fern include fern feature extraction and fern classification, as shown in Fig. 4. Each 
bounding box, as the input of Random Fern, corresponds to an image block in the frame. In 
TLD, classification feature is generated by pixel comparison. More specifically, 13 pairs of 
pixels are sampled based on the pre-assigned pattern from an image block. The grey values of 
pixel pairs are used for comparison and the results are recorded by 0 or 1. Therefore, the 
comparison results of 13 pairs of pixels can be represented by a binary vector, called fern 
feature vector. Due to the diverse scales of the bounding boxes, TLD defines 10 kinds of 
sampling patterns for each scale. Therefore, each bounding box is represented by 10 13-bit 
fern feature vectors through feature extraction.  

In order to classify the feature vectors, TLD builds a random tree for each kind of 
sampling pattern, which corresponds to a kind of feature vector. All random trees compose of 
a Random Forest. After that, each feature vector is classified in the corresponding random tree 
and falls into a certain leaf node of the tree. Each leaf node of the random tree is given the 
weight during the training process. And the weight represents the probability that the bounding 
box contains the target. For each bounding box, the response value of the Random Fern is the 
average of the 10 weights from the corresponding random trees.  

 
Fig. 4. The overview of Random Fern. Random fern includes two parts: feature extraction and fern 

classification. 
 
4.1.1 Feature Extraction 

The inputs of feature extraction include the image of the current frame, bounding boxes 
array, the filtered bounding box index and the sampling patterns for pixel pairs. And the 
outputs are the corresponding feature vectors of the bounding boxes.  

Each bounding box is represented by a quintuple {BBx, BBy, BBw, BBh, scale_id}, which 
are respectively the coordinate of the upper left corner, the width, the height and the scale 
index of the bounding box. The quintuples of all candidate bounding boxes are organized as a 
one-dimensional array grid, which is stored in a constant memory of OpenCL for kernels 
calling. Meanwhile, the grey value of current image is also stored in a constant memory. The 
filtered bounding box index, which is a one-dimensional array, points out the positions of the 
filtered bounding boxes in the grid. Moreover, the sample patterns are also organized as a 
one-dimensional array. Each sample pattern is represented by {x1, y1, x2, y2}, which are the 
coordinates of the pixel pair in the bounding box. Considering that each scale of bounding 
boxes has 10 kinds of sampling patterns and each sampling pattern has 13 pairs of pixels, the 
array storing sampling patterns has {scale_num * 10 * 13 * 4} elements in total. In order to load 
and store efficiently, we convert the storage order from { 1

1x , 1
1y , 1

2x , 1
2y , ......, n

1x , n
1y , n

2x , 
n
2y } to { 1

1x , ..., n
1x , 1

1y , ..., n
1y , 1

2x , ..., n
2x , 1

2y , ..., n
2y }. Similar to the grid, the array of 

sampling patterns is stored in a constant memory. 
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In order to optimize the process of feature extraction on OpenCL, we exploit the 
parallelism of this process. In our work, each work item takes charge of the complete process 
of a pair of pixels, which includes coordinates calculation, grey value extraction and 
comparison, as shown in Fig. 5. A work group, which is composed of 130 work items, 
generates 10 fern feature vectors of a bounding box. That is, the adjacent 13 work items 
combine their results of grey value comparison to a fern feature vector and store it into global 
memory. Moreover, the number of work groups is equals to the number of bounding boxes. 
The corresponding kernel code is shown in Fig. 6.  

 

 
 

Fig. 5. Fern Feature Extraction. 
 

 
Fig. 6. Kernel of Fern Feature Extraction  

 
 

4.1.2 Fern Classification 
The 10 fern feature vectors of each bounding box are the input of the random forest to 

achieve the response values. The outputs are the response values of the bounding boxes. As 
illustrated in Fig. 6, a fern feature vector is stored as a 13-bit binary integer. Therefore, in order 
to improve the efficiency of classification, it is not necessary to build a tree structure to check 
each element of a feature vector. By contrast, an implementation of lookup table is adopted in 
this paper. A 13-bit binary integer ranges from 1 to 213=8192. We build a table containing 
8192 items instead of a tree structure. Each item stores a weight of a leaf node. Due to that the 
random forest has 10 trees, we build 10 tables for matching. Afterwards, a fern feature vector 
is taken as an index to look up in the corresponding table for the weight of the leaf node. For a 
bounding box, 10 weights are obtained from looking up in the 10 tables by the associated fern 
feature vectors. The sum of the weights is the response value of the bounding box. The kernel 
code of classification is shown in Fig. 7. 
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Fig. 7. Kernel of Fern Classification 

 
4.1.3 Overlapped Execution with Tracking Module 

Because LK optical flow module is independent of Random Fern Classification, these two 
parts can be overlapped executed. Fig. 8 illustrates the OpenCL host program of overlapped 
execution. The numbers of filtered bounding boxes are different in each frame. The array 
lengths of the filtered bounding box index, fern feature vector and response values are also 
changed during tracking. When the tracking module finishes, the command queue would be 
checked whether all commands in the queue have been executed. If not, the process would 
block and wait. At last, the memory space is released for recreation in next frame. 

 

 
Fig. 8. Overlapped Execution between LK optical flow and Random Fern 

 

4.2 Parallel Implementations for Nearest Neighbor Classifier 
After finishing the Random Fern, the response value of each bounding box has been calculated. 
The bounding boxes, whose response values are higher than the threshold and rank among the 
top 100, are adopted as the inputs of Nearest Neighbor Classifier to compute the confidence of 
containing the target. 
 
4.2.1 Algorithm Flow 

The positive and negative samples are composed of the model of Nearest Neighbor 
Classifier. Before the calculation of Nearest Neighbor Classification, an image block is 
extracted as the input according to the corresponding bounding box. Then the image block is 
compared with the positive and negative samples to calculate the similarities. We denote maxP 
and maxN respectively as the maximum similarity in positive samples and negative samples. 
And the confidence is denoted by NNConf. The confidence of the bounding box is calculated 
as: 

1-=
2 - -

maxNNNConf
maxP maxN

.                                                (1) 
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It is clearly that maxP is positively correlated to the confidence and maxN is negatively 
correlated to the confidence. As described in Algorithm 1, the similarity is defined by 
Normalized Cross-Correlation (NCC). We denote f and t  as two image blocks. f and t  are 
declared as two two-dimension float arrays which respectively store the greyscale images. 
Each pixel in the greyscale image is represented by a float between 0 and 1. NCC of two image 
blocks is calculated as 

,

2 2
, ,

( , ) ( , )

( , ) ( , )
x y

x y x y

f x y t x y
NCC

f x y t x y
=

∑
∑ ∑

,                                        (2) 

where ( , )x y  is the horizontal and vertical coordinates. TLD makes a little modification for 
the calculation of NCC. In order to avoid the interference of illumination, the average grey 
value of the whole image block is subtracted from the grey value of each pixel. Meanwhile, in 
order to ensure the normalization of NCC, the formula is modified as: 

,

2 2
, ,

( , ) ( , )1 ( 1)
2 ( , ) ( , )

x y

x y x y

f x y t x y
NCC

f x y t x y
= +

∑
∑ ∑

.                                (3) 

4.2.2 Parallel Implementations of NCC Calculation 
Nearest Neighbor Classification includes two stages. In first stage, all image blocks are 

used to calculate NCC with each sample in the model. Then maxN, maxP and the confidence 
NNConf of each image block are obtained in second stage. Due to numerous bounding boxes, 
the number of NCC calculation is:           the number of bounding boxes the number of samples× in 
the model. Obviously, the first stage is computationally intensive. However, the number of 
bounding box is no more than 100, which indicates the less computations of the second stage. 
Moreover, considering reduction operations are not appropriate to optimize on OpenCL in the 
second stage, we only focus on the parallel implementations of NCC calculation the first stage. 
The second stage is still processed in the host program. 

In OpenTLD, the size of image samples in the model is 15 15× . Similarly, an image block 
extracted from the corresponding bounding box is resized to the same size. As illustrated in 
Formula (3), the NCC results is not related to the storage mode and access order of the pixels 
in an image block. Therefore, in order to exploit the parallelism in the Nearest Neighbor 
Classification, we build a one-dimensional array patches to store continuously all pixel grey 
values of all image blocks. In this array, the continuous 15 15 225× =  elements denote an 
input image block. Likewise, the positive and negative samples in the model are also stored in 
a one-dimensional array p_n_samples, where the positive samples are the first and the 
negative samples are the last. According to the number of the positive or negative samples, we 
can identify that any element in the array belongs positive or negative. These two 
one-dimensional arrays mentioned above are the input of NCC calculation. 

We adopt three-dimensional index space in the parallel implementation of NCC 
calculation. As shown in Fig. 9, each work group takes charge of the NCC calculation between 
an image block and an image sample. The range of three dimensions for work groups is {1, 
number of bounding boxes, number of samples}. Each work item is responsible to calculate 
the product of the sum of squares between the same pixel position from two image blocks. The 
range of three dimensions for work items is {225, 1, 1}. Therefore, for the whole 
three-dimensional index space, the number of work items is 
225       number of bounding boxes number of samples× × . According to the Formula (3), the results 
of each pixel position should be accumulated. In this paper, we adopt a tree reduction to 
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improve the efficiency of accumulation. However, the number of elements should be a power 
of 2 in a tree reduction. We adjust the number of the work item in whole three-dimensional 
index space to {256, number of bounding boxes, number of samples}. The kernel code for 
NCC calculation is shown in Fig. 10.  

 

 
Fig. 9. OpenCL index space for NCC Calculation. 

 

 
Fig. 10. Kernel of NCC Calculation 

 

4.3 Exploiting the Parallelism within Learning Modules 
Based on an overall analysis of the output bounding boxes from tracking and detection module, 
host program estimates the target position in the current frame. As mentioned in Section 3, 
when the tracking module does not fail and the trackerBB is validated, the learning module is 
called for updating the detection module. The learning module composes of two stages. In the 
first stage, a few bounding boxes are selected as the positive and negative samples according 
to the overlaps with the currentBB and the response values. And the second stage is a 
retraining module, which is designed for updating the weights of leaf nodes in Random Fern 
and the model in Nearest Neighbor Classifier. The number of bounding boxes in the first stage 
is numerous. For example, a frame with size 320 240×  can produce more than 60000 
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bounding boxes. The overlap and the response value calculations for all bounding boxes are 
time-consuming and inefficiency. By contrast, the number of positive and negative samples is 
few. Generally, the number of positive samples is about 10 and the negative samples are less 
than the positive. Furthermore, the calculation of the second stage is not large and there are 
most branch operations in the calculation. Therefore, in this section, we exploit the parallelism 
in the first stage based on OpenCL and the second stage is still processed by host program. 
 
4.3.1 Extraction of Negative Samples and Calculation of Overlaps 

The negative samples are the incorrectly classified bounding boxes, which have the lower 
overlaps than the threshold and high response values. In order to improve the efficiency, we 
propose to extract the negative samples and calculate the overlaps in the same kernel. The 
calculation of overlaps in this section refers to IoU.  

Obviously, the inputs of this kernel include a one-dimension array grid_reorg which stores 
all bounding boxes, the response values and the current target position currentBB. The outputs 
include the negative samples set and the overlaps. Unlike the kernel of feature extraction, in 
this section, each work item is charge of the calculation of overlap between a bounding box 
and the currentBB. If the bounding boxes are stored in a one-dimension array organized as {..., 
BBxi, BByi, BBwi, BBhi, scale_idi, ...} in Section 4.1.1, the contiguous work items access the 
discontinuous memory when they load the same parameter of bounding boxes (for example, 
BBxi). Therefore, we declare another one-dimension array grid_reorg to store all bounding 
boxes as {BBx1, ... BBxn, BBy1, ..., BByn, BBw1, ... BBwn, BBh1, ... BBhn}. The reorganized 
array grid_reorg substitutes for grid as the input of the kernel in this section. The response 
values are reused from the results fern_responses in Section 4.1.2. Because the number of 
negative samples is uncertain and the work items in different work groups cannot synchronize 
in OpenCL, we adopt a tag array to record the output negative samples. The length of the tag 
array is equal to the number of bounding boxes. An element in the tag array is labeled as 1 
when the corresponding bounding box is selected as a negative sample. Otherwise, the 
element is labeled as 0. To exploit the parallelism in extraction of negative samples and 
calculation of overlaps, each work item extracts a bounding box from grid_reorg and 
calculates the overlap between the bounding box and the currentBB. If the overlap is lower 
than the threshold, the corresponding response value is checked to determine whether or not 
the bounding box belongs to a negative sample. In order to improve the occupancy of OpenCL 
devices, a work group includes 512 work items. The kernel code is shown in Fig. 11.  

 

 
Fig. 11. Kernel of Overlap Calculation and Negative Samples Extraction 
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4.3.2 Extraction of Positive Samples 

In OpenTLD, the positive samples are top 10 bounding boxes with highest overlaps. 
Therefore, the extraction of positive samples is a process to search the bounding boxes with 
highest overlaps. And the process is a typical reduction which has less computation and more 
branches. However, due to the large number of bounding boxes in the grid_reorg, exploiting 
the parallelism in this process can significantly improve the utilization of memory bandwidth. 

In order to search the top 10 bounding boxes with highest overlaps, the kernel would be 
executed for 10 times and in each time, an index of a bounding box in the grid_reorg is 
obtained. In the kernel, the number of work items is equals to the number of bounding boxes. 
Each work item loads the overlap of a bounding box and compares with other work items in 
the same work group. A work group contains 1024 work items and the index of the bounding 
box with highest overlap in the work group is obtained by a tree reduction. The index is stored 
into the global memory. Meanwhile, all work groups send own index to the host program. The 
host program achieves the final index of the bounding box with highest overlap by reduction. 
As shown in Fig. 12, the input of the kernel includes the array overlaps storing the overlaps 
which are calculated by the kernel in previous part. The output includes the index of the 
bounding box with the highest overlap in all work groups. The selected bounding box is added 
into the positive sample set. In particular, in order not to get the same output after each 
iteration, the overlap of the selected bounding box should be set to the minimum. Therefore, in 
this kernel, the index of the bounding box top_BB_id_in_group, which is selected from 
previous execution, is also adopted as an input. Before the current execution of the kernel, the 
overlap is set to minimum according to the index. The kernel for the extraction of positive 
samples is shown in Fig. 13. 

 

 
Fig. 12. Positive Samples Extraction 

 

 
Fig. 13. Kernel of Positive Samples Extraction 



214                                                    Chen et al.: Efficient Parallel TLD on CPU-GPU Platform for Real-Time Tracking 

The array top_BB_id_in_group in global memory is passed back to the host program. The 
host program re-executes the reduction to obtain the bounding box with the highest overlap. 
The index of the selected bounding box is adopted as the input of the kernel for next execution 
until 10 bounding boxes are picked out as the positive samples. As mentioned above, after 
finishing the extraction of positive and negative samples, the re-training of detection module, 
which is not appropriate for parallelizing on OpenCL, is processed by the host program. Thus 
far, we have introduced the parallel implementations of OpenTLD based on OpenCL. 

5. Evaluation and Analysis 
In this section, we propose an exhaustive evaluation and analysis for our proposed parallel 
TLD tracker. We will evaluate the performance of our proposed parallel TLD from three 
levels. Firstly, a performance comparison is made between the original TLD and our 
optimized TLD at kernel level, as shown in Section 5.2. Secondly, besides the computational 
overhead, we take the data reorganization and communication overhead into consideration for 
evaluating. Section 5.3 mainly shows the execution times of diverse implementations at 
module level. At last, we evaluate the performance of our complete parallel TLD with some 
baselines, including original TLD, HTLD and AATLD. 

5.1 Experimental Setup 
The experimental platform is based on a typical desktop platform, whose configurations are 
summarized in Table 2. The test dataset we adopted is OTB50 [3]. The baselines compared 
with our proposed parallel TLD include original OpenTLD, H-TLD [23] and AATLD [24]. 
Because this paper focuses on computing efficiency, we adopt execution time and speedup as 
the metric. However, our proposed parallel TLD can achieve high accuracy as the same as 
original OpenTLD. The tracking results on some image sequences with difficult attributes 
(such as occlusion, fast motion, illumination variation, deformation, out-of-view) are shown in 
Fig. 14. 
 

 
Fig. 14. Screenshots of TLD tracking results. From top to bottom, the image sequences are Car, 

Jumping, David and Panda. 
 

Table 2. Platform Specifications 

Hardware 
CPU Intel i7-5500U (2 cores@2.4GHz) 
GPU NVIDIA GTX 960M 

Memory 16GB DDR3 1600MHz 

Software 

OS Ubuntu 16.04 
Compiler gcc/g++ 4.8 

OpenCL for CPU OpenCL 2.0, Intel OpenCL 1.2 Driver 
OpenCL for GPU OpenCL 1.2, CUDA 8.0 

OpenCV OpenCV 2.4.13 
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5.2 Kernel Performance Analysis 
We first evaluate the kernel performance separately in this part. The kernels optimized on 
OpenCL include Fern Feature Extraction, Fern Classification, NCC Calculation, Overlap and 
Negative Samples Calculation and Positive Samples Calculation. 

Due to the portability of OpenCL, the aforementioned kernels can be executed on any 
devices and the host program can specify the device for each kernel. We respectively record 
the execution time of each kernel on CPU and GPU. In order to achieve the high accuracy of 
the statistics, we adopt the event in OpenCL to record the time overhead. In particular, the time 
overhead only contains the time of kernel execution, not including data transferring and kernel 
startup, which are considered in next part. Each image sequence in test dataset has numerous 
frames of images. The kernel execution time is defined as the sum of the overhead in each 
frame. Similarly, in this section, we extract the program segments of the same function in 
original OpenTLD as the baseline. The experiments are repeated for three times and the 
averages of the statistics for all kernels and program segments are taken for comparison.  

The experiment results on different image sequences has the same trend and properties. 
Due to space limitations, we mainly show the results on the image sequence Car in OTB50. 
The execution times of all kernels on diverse devices are shown in Table 3. GPU_OCL and 
CPU_OCL respectively represent the execution times of the kernels we implemented and 
optimized on GPU and CPU. ORG represents the overhead of the program segment in original 
OpenTLD. Corresponding to the Table 3, the speedups based on ORG are shown in Table 4. 
As can be seen from the results, the performances of our proposed parallel implementations on 
CPU and GPU are significantly higher than that of original OpenTLD. Compared to other 
kernels, Fern Feature Extraction and Overlap and Negative Samples Calculation have the 
lower performance improvements. During overlap and negative samples calculation, most 
bounding boxes have no overlap with currentBB and cannot perform efficient overlap 
calculation. Therefore, the kernel of Overlap and Negative Samples Calculation has lower 
parallelism. Fern Feature Extraction is not compute-intensive and has complex, irregular 
memory accesses. Our proposed parallel implementation of this kernel cannot make the best 
use of computing resources and memory bandwidth. 

 
Table 3. Execution time of all kernels on diverse devices (ms) (Lower is better. Red fonts indicate the 
best performance) 

 FFE1 FC2 NCC3 ONSC4 PSC5 
GPU_OCL 502.16 25.08 78.38 15.53 173.01 
CPU_OCL 3735.66 281.53 400.39 96.86 990.07 

ORG 24925.70 6664.20 7660.12 569.38 17189.30 
1 Fern Feature Extraction 
2 Fern Classification 
3 NCC Calculation 
4 Overlap and Negative Samples Calculation 
5 Positive Samples Calculation 
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Table 4. Speedup of all kernels on diverse devices. The original TLD is adopted as baseline to calculate 
the speedup. The values in () represent the GPU speedups compared to corresponding performance of 
CPU_OCL. (Higher is better. Red fonts indicate the best performance) 

 FFE FC NCC ONSC PSC 
GPU_OCL 49.64  

(7.44) 
265.74 
(11.23) 

97.73 
(5.11) 

36.65 
(6.24) 

99.35 
(5.72) 

CPU_OCL 6.67 23.67 19.13 5.88 17.36 
ORG 1.00 1.00 1.00 1.00 1.00 

 
Furthermore, the kernels have higher performance on GPU than that on CPU. The kernel 

NCC has the lowest speedup on GPU compared to CPU. The main calculation in NCC is tree 
reduction, which is not appropriate for GPU. With the iteration of loops during reduction, the 
stream processors participating into the calculation are fewer. Until the last loop, only one 
work item is charge of accumulation. By contrast, the kernel Fern Classification has the 
highest speedup on GPU compared to CPU. Due to that each bounding box has 10 fern feature 
vectors to classify and the number of bounding boxes is large, the kernel Fern Classification 
need numerous work items, which is appropriate for parallel execution on GPU. 

5.3 Module Performance Analysis 
The parallel optimization based on OpenCL can significantly improve the performance, 

but lead to extra overhead. The main overhead results from data reorganization and 
transferring. For example, Before the execution of NCC, the image blocks, the positive and 
negative samples are reorganized into two one-dimensional arrays and transferred to the 
computing devices. Beyond this, the extra overhead includes maintenance of the command 
query and kernel startup. 

In order to further evaluate the performance of our proposed kernels based on OpenCL, we 
consider the extra overhead into the execution times and compare with the original OpenTLD. 
Here we propose the comparison according to the three modules of the TLD structure: 
 Random Fern: includes Fern Feature Extraction, Fern Classification, data 

preprocessing and transferring in front and behind of the two kernels. 
 Nearest Neighbor Classifier: includes NCC Calculation, confidence calculation and 

data reorganization and transferring. 
 Learning Module: includes Overlap Calculation and Negative Samples Calculation, 

Positive Samples Calculation and data transferring between the two kernels. 
  

Table 5. Execution time comparison for three modules of TLD (ms) (Lower is better. Red fonts indicate 
the best performance. Blue fonts indicate the second-best ones.) 

 Learning Module Nearest Neighbor 
Classifier Random Fern 

GPU_OCL 1787.53 3184.21 6741.54 
CPU_OCL 1653.49 670.25 8242.86 

ORG 17760.6 7861.42 37580.6 
 
The reason for dividing three modules is that the overheads between kernels are easy to 

classify into any part. Likewise, we adopt the corresponding program segments in original 
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OpenTLD as the baseline. The evaluation results are shown in Table 5. As seen from the 
evaluations, our proposed optimizations can still improve the performance of TLD even if the 
extra overheads are considered. Meanwhile, the speedups in Table 2 slightly decrease 
compared with that in Table 4. It indicates that the performance benefits dominate the 
overheads for OpenCL parallelizing. For Random Fern, the kernel on GPU outperforms than 
that on CPU. By contrast, for Nearest Neighbor Classifier, the kernel on CPU has better 
performance. On one hand, the kernel of NCC Calculation has the lowest speedup on GPU 
compared to CPU. On the other hand, when the kernel NCC Calculation is executed on GPU, 
numerous image blocks, positive and negative samples are transferred to the GPU and the 
NCC results are transferred back to the host program. The execution on CPU does not contains 
these extra transferring. For the same reason, the performance of Learning Module on CPU is 
better than that on GPU. 

5.4 Evaluation for Complete Parallel TLD Tracker 
In this section, we evaluate the performance of the complete parallel TLD tracker. For the 
complete parallel TLD tracker, we further introduce the overlapped execution of Fern 
Classification and LK optical flow mentioned in Section 4.1.3. Based on the evaluation of 
previous part, we have concluded the most appropriate devices for each part of TLD. Except 
the original TLD, we adopt the AATLD and H-TLD as baselines for comparison on our 
experimental platform. Therefore, we evaluate the diverse implementations of TLD on 
different devices. The diverse implementations are as follows: 
 Original TLD. Original OpenTLD on CPU. 
 CPU Implementation. All kernels we optimized in this paper are executed on CPU. 
 GPU Implementation. All kernels we optimized in this paper are executed on GPU. 
 CPU/GPU Implementation. The two kernels in Random Fern are executed on GPU. 

The three kernels of Nearest Neighbor Classification and Learning Module are 
executed on CPU. 

 AATLD. A heterogeneous CPU-GPU TLD solution using OpenMP, MPI and CUDA 
 H-TLD. A heterogeneous CPU-GPU TLD solution using OpenMP and CUDA. 

 
Table 6. Execution time (ms) and FPS (frame per second) comparison for diveres implementations of 
complete TLD tracker (Lower is better. Red fonts indicate the best performance. Blue fonts indicate the 
second-best ones.) 

Trackers Original 
TLD CPU Imp. GPU Imp. CPU/GPU 

Imp. 
 AATLD H-TLD 

Execution 
Time 69953.2 18581.5 19842.2 17841.7  32193.9 25530.4 

FPS 13.49 50.79 47.57 52.90  29.32 36.97 
 
The evaluation results for different implementations of TLD are shown in Table 6. As seen 

from the evaluation, CPU implementation outperforms than GPU implementation. 
Corresponding to the conclusions of previous section, the benefits of Nearest Neighbor 
Classification and Learning Module on CPU dominates that of Random Fern on GPU. For 
CPU/GPU implementation, each kernel is executed on the most appropriate device and 
achieves the best performance. Compared with original OpenTLD, AATLD and H-TLD, the 
CPU/GPU implementation outperforms and has achieved the speedup 3.92 than original 
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OpenTLD. Moreover, our proposed three parallel TLD implementations can meet the 
real-time requirement and the CPU/GPU implementation runs at 52.9 frames per second. 

6. Conclusion 
TLD, which is a long-term tracking framework, has practicability and wide application 
prospects on heterogeneous platforms. In order to improve the computing efficiency, in this 
paper, we propose an efficient parallel TLD tracker based on OpenCL. We focus on parallel 
designs and optimizations for computing-intensive modules in TLD, including Fern Feature 
Extraction, Fern Classification, NCC Calculation, Overlaps Calculation, Positive and 
Negative Samples Extraction. Moreover, we introduce the overlapped execution between 
tracking module and detection module. A comprehensive evaluation demonstrates that the 
parallel kernels we proposed can improve the computing efficiency than original TLD. Even if 
considering the overhead introduced by OpenCL optimizations, our complete parallel TLD 
tracker has achieved a 3.92 speedup than original TLD on heterogeneous platform and meets 
the real-time requirement. 
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