• Title/Summary/Keyword: real time feedback

Search Result 622, Processing Time 0.029 seconds

Analysis of Response Characteristics of the CAN-Based Feedback Control System Considering the Network Delay Time

  • Jeon, Jong-Man;Kim, Dae-Won
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.119.3-119
    • /
    • 2001
  • When building a network-based real-time control system, a network-induced delay time should be surly considered for real time schedulability to be guaranteed. The network delay time on end-to-end communication has been analyzed theoretically and modeled mathematically from many previous works. There also exist any other delay element not considered before. In this paper, the remote feedback control system using the CAN protocol is proposed to control three axes´ manipulator arm and the application layer of CAN is modeled to analyze the delay elements defined by three types of time delay: Software delay time, Controller delay time, and Access delay time, in details. The analyzed results are used as an important component to determine PID gains of the proposed system. The effect of the delay time on the control performance is evaluated by com paring the response characteristics of the control system through simulation.

  • PDF

Discrete-Time Feedback Error Learning with PD Controller

  • Wongsura, Sirisak;Kongprawechnon, Waree
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1911-1916
    • /
    • 2005
  • In this study, the basic motor control system had been investigated. The Discrete-Time Feedback Error Learning (DTFEL) method is used to control this system. This method is anologous to the original continuous-time version Feedback Error Learning(FEL) control which is proposed as a control model of cerebellum in the field of computational neuroscience. The DTFEL controller consists of two main parts, a feedforward controller part and a feedback controller part. Each part will deals with different control problems. The feedback controller deals with robustness and stability, while the feedforward controller deals with response speed. The feedforward controller, used to solve the tracking control problem, is adaptable. To make such the tracking perfect, the adaptive law is designed so that the feedforward controller becomes an inverse system of the controlled plant. The novelty of FEL method lies in its use of feedback error as a teaching signal for learning the inverse model. The PD control theory is selected to be applied in the feedback part to guarantee the stability and solve the robust stabilization problems. The simulation of each individual part and the integrated one are taken to clarify the study.

  • PDF

Performance of CLMS Algorithm for Real-time Application in ANC Systems of Road Noise Input (도로소음 입력의 ANC시스템에서 실시간 적용의 CLMS 알고리즘의 성능)

  • Moon, Hak-Ryong;Shon, Jin-Geun
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.63 no.4
    • /
    • pp.260-265
    • /
    • 2014
  • Recently, many active noise control (ANC) systems, which employ the adaptive filter controlling method, have been reported for eliminating unwanted noise. ANC systems based on the filtered-X least mean square (FXLMS) algorithm have a problem with compensating the acoustic feedback of secondary route. It is difficult to apply the real time, because transfer function of secondary route must be measured by off-line method to solve this problem. In this paper, we propose the ANC system that applies a correlation LMS(CLMS) algorithm for improving a problem of transfer function measurement. The proposed algorithm is based on input of road noise. The proposed ANC systems have an advantage of real-time process without degradation of performance, although there are many calculation compared with FXLMS algorithm.

Load Control Mechanism for Real-Time Web Server Systems Based on Feedback Control Theory (피드백 제어 이론을 이용한 실시간 웹서버 시스템의 부하 제어 기법)

  • Kang, Bong-Jik;Jung, Suk-Yong;Kim, Young-Il;Choi, Kyung-Hee;Jung, Gi-Hyun;Yoo, Hae-Young
    • The KIPS Transactions:PartA
    • /
    • v.10A no.6
    • /
    • pp.615-626
    • /
    • 2003
  • This paper proposes a mechanism for managing overload Introduced by excessive web requests in real-time web service system. The many previous mechanisms statically manage the overload and thus the dynamic characteristics are not reflected. This paper proposes a mechanism that models system load based on control theory approach and includes its dynamic characteristics. We design a controller that is able to meet performance requirement. A feedback control system is implemented applying the proposed mechanism and the stable operation of system is verified through various simulation environments.

Decentralized Output Feedback Robust Passive Control for Linear Interconnected Uncertain Time-Delay Systems

  • Shim, Duk-Sum
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.4 no.2
    • /
    • pp.140-146
    • /
    • 2002
  • We consider a class of large-scale interconnected time delay systems and investigate a decentralized robust passive control problem. sufficient conditions for unforced interconnected uncertain systems with time delay to be robustly stable with extended strictly passivity is given in terms of algebraic Riccati inequality and linear matrix inequality. The decentralized robust passive control problem for norm-bounded and positive real uncertainty is shown to be converted to extended strictly positive real control problem for a modified system which contains neither time delay nor uncertainty.

Analysis of Satisfaction of Elementary School Students and Teachers for Software Practice Education in Real-Time Video Classes (실시간 화상 수업 환경에서 소프트웨어 실습 교육에 대한 초등학생 및 교사의 만족도 분석)

  • Kang, Doobong;Park, Hansuk
    • Journal of The Korean Association of Information Education
    • /
    • v.25 no.5
    • /
    • pp.825-834
    • /
    • 2021
  • This study analyzed learners' satisfaction and in-depth interviews with teachers after operating a software practical curriculum as a real-time video class for fifth and sixth graders in elementary school. The correlation between learner's presence, class overall, interaction, and real-time video class satisfaction showed that the positive correlation between presence, class overall, interaction, and satisfaction with real-time video classes was somewhat high. There were some differences in the real-time video class participation environment and real-time video class satisfaction, but it was not found to be statistically significant. In the case of teachers, it was difficult to respond to problems occurring in each student's individual environment, interactions between students, and individual feedback problems for a sluggish student. To solve this problem, opinions such as preliminary guidance and verification of real-time video class connection environment, error support for sluggish students and individual class participation environment, and feedback on individual tasks using LMS were suggested.

Position control of robots with uncertain parameters using output-feedback controller (출력제어기를 이용한 불학실 파라미터를 갖는 로봇의 위치제어)

  • ;;Ailon, Amit
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.472-475
    • /
    • 1997
  • The principle objective of this paper is to explain and demonstrate the advantage of the output-feedback controller proposed by Ailon in [61 by using simulation and experimental results. Namely, the goal of this study is to design and implement a real-time controller for set-point regulation of a one-link rigid robot manipulator with unknown parameters using only position measurement. For implementation a direct drive one-link rigid robot manipulator is constructed and a TMS320C40 DSP systems board is used in implementing real-time control algorithm.

  • PDF

Effective Inverse Matrix Transformation Method for Haptic Volume Rendering (햅틱 볼륨 렌더링을 위한 효과적인 역행렬 계산법)

  • Kim, Nam-Oh;Min, Wan-Ki;Jung, Won-Tae;Kim, Young-Dong
    • Proceedings of the KIEE Conference
    • /
    • 2007.11c
    • /
    • pp.183-186
    • /
    • 2007
  • Realistic deformation of computer simulated anatomical structures is computationally intensive. As a result, simple methodologies not based in continuum mechanics have been employed for achieving real time deformation of virtual reality. Since the graphical interpolations and simple spring models commonly used in these simulations are not based on the biomechanical properties of tissue structures, these "quick and dirty"methods typically do not accurately represent the complex deformations and force-feedback interactions that can take place during surgery. Finite Element(FE) analysis is widely regarded as the most appropriate alternative to these methods. However, because of the highly computational nature of the FE method, its direct application to real time force feedback and visualization of tissue deformation has not been practical for most simulations. If the mathematics are optimized through pre-processing to yield only the information essential to the simulation task run-time computation requirements can be drastically reduced. To apply the FEM, We examined a various in verse matrix method and a deformed material model is produced and then the graphic deformation with this model is able to force. As our simulation program is reduced by the real-time calculation and simplification because the purpose of this system is to transact in the real time.

  • PDF

Worst-case optimal feedback control policy for a remote electrical drive system with time-delay

  • Gao, Yu;Zhang, Zheng;Lee, Chang-Goo;Chong, Kil-To
    • Proceedings of the KIEE Conference
    • /
    • 2007.04a
    • /
    • pp.92-94
    • /
    • 2007
  • This paper considers an optimal control problem for a remote control to an electrical drive system with a DC motor. Since it is a linear control system with time-delay subject to unknown but bounded disturbance, we construct a worst-case feedback control policy. This policy can guarantee that, for all admissible uncertain disturbances, the real system state should be in a prescribed neighborhood of a desired value, and the cost functional takes the best guarantee value. The worst-case feedback control policy is allowed to be corrected at one correction point between the initial to the final time, which is equivalent to solving a 1-level min-max problem. Since the min-max problem at the stage does not yield a simple analytical solution, we consider an approximate control policy, which is equivalent and can be solved explicitly m the numerical experiments.

  • PDF

A stability condition of minimal variance control with mismatch of time delay

  • Hashimoto, H.;Takenami, Y.;Akizuki, K.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.918-923
    • /
    • 1989
  • This paper presents a stability condition for Astrom's minimal variance control(MVC) with mismatch of time delay for a SISO ARMAX model containing time delay. The proof of the condition presented here is based on the characteristic equation in the feedback system and its magnitude. This condition, from easy numerical calculation, is able to find the stability of the feedback system without knowing the real time delay.

  • PDF