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Abstract: This paper presents a stability condition for Astrém’s minimal variance con-
trol(MVC) with mismatch of time delay for a SISO ARMAX model containing time delay.
The proof of the condition presented here is based on the characteristic equation in the feed-
back system and its magnitude. This condition, from easy numerical calculation, is able to find

the stability of the feedback system without knowing the real time delay.

1 Introduction

The minimal variance control(MVC) strategy
for single input single output discrete time linear
stochastic system containing time delay is stud-
ied by Astrom[l]. This strategy is an extremely
simple algorithm which can provide effective reg-
ulation or tracking when the parameters of the
system and disturbance structures are known ex-
actly. However, the time delay used in a control
system does not coincide in general with that in
the real system. Therelore, the feedback system
designed by the MVC law, having some mismatch
of the time delay, may not guarantee stability of
the feedback system.

This paper presents a stability condition for
MVC with mismatch of time delay. The proof of
the condition presented here uses the characteris-
tic equation in the feedback system and its mag-
nitude. This condition, from easy calculation, is
able to find the stability of the feedback system
without knowing the real time delay. Compar-
ing the presented condition with that studied by
another author’s, it is found theoretically that
the presented condition has much effectiveness in
terms of sufficiency. Furthermore, a simple de-
sign procedure based on the presented condition

is demonstrated to stabilize the unstable feedback
system caused by mismatch of time delay.

2 Problem Statement

Consider the minimal variance control (MVC)
of a SISO ARMAX system represeéntation of the
form

Az yy(k) = 2B Yulk) + C(="Dw(k) (1)

where y(k) and u(k) denote the output and input
respeclively, and {w(k)} is a sequence of indepen-
dent, equally distributed normal (0,02) random
variables. A(z7'), B(z™!) and C(z7!) are scalar

polynomials in the unit delay operator 27! . Then
AN =14az2z 4 4apz™

B(z_l) =bo+ bz 44 b,z
Clz =14zt 4+ - Fepz ™

The following assumption will be made about the
system (1).

[Assumption 1]

1. The degrees and coeflicients of

A(z7"Y), B(z7") and C(z7") are known.
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2. B(z71),C(z7!) are stable polynomials.

3. The time delay d is greater than or equal to
1.

4. The reference signal ygr(k) is bounded, and
the d step ahead time value of it can be used.

In the case of knowing the time delay d , under
Assumption 1, the admissible control input u(k)
that minimizes

J = E{(y(k) ~ yr(k))’}
is generated by following [1]

C(z Dyn(k +d) — S(z"")y(k)
B(z-1)R(z7")

(2)

u(k) = (3)

where polynomials R(27!) and S(z~!), which are
of degrees d — 1 and n, — 1 respectively, are deter-
mined uniquely by the following synthesis equa-
tion {2]

C(z™) = A(z7)R(z7") + 27%5(z7)
where

deg{R(z"")} =d — 1, deg{S(z"")} = n. — |

(4)

and
R(z™) = l4rmz 4 drgz@Y
S(Z”l) = 60+512_1 R +3n.,~12~(n“-1)

Next, consider the MVC law with mismatch of
time delay. Let d be the time delay used in the
design of the MVC, then 12(27!) and S(z71), sim-

ilar in its calculation to eq.(4), are

C(z) = AR + 2715 (5)

where

deg{R(z"")} =d -1, deg{S(z"1)} = n, — 1
From egs.(4) and (5), when d is not equal to d,
R(z™Y) # R(z™Y) and S(27') # S(z7!). In this

case, the control input is generated by
u(y = STtk +d) = SETy(k)
B(z~)R(="1)
Note that it is not guranteed that the polynomial
R(27Y) (or(R(27")) defined by eq.(4)(or (5)) is
stable.

(6)
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Figure 1: The feedback system with mismatch of
time delay.

3 A Stability Condition
with Mismatch of Time
Delay

The feedback system designed by the MVC law
with mismatch of time delay is shown in Fig.1.

The closed loop transfer function from r(k) to
y(k) is defined by

274B(z7")

(2 A ) (=) + 2795 (271)]
) (M)

In spite of the time delay d not appearing ex-
plicitly in the right side of (7), Gor(z™") will be-
come stable or unstable according to the value of
d, because Rgz"l) and $(z71) are determined de-
pending on d. The poles of G¢r(27!) cannot be
examined directly, since the real time delay d in
the right side of (7) is unknown. Therefore, we
will consider the derivation of the stability con-
dition without knowing the real time delay. The
characteristic equation of the feedback system is

defined by

Y(z7) = Blz{AETR(=) + 2787}

(8)
To examine the stability of ¥(z71), it is suffi-
cient to examine the roots of [A(z71)R(z71) +
z7%8(271)] shown in eq.(8), since B(z™!) is a sta-
ble polynomial from Assumption 1. From this
characteristic equation, we will get the theorem
concerned with the stability of the feedback sys-
tem with mismatch of time delay.

GCL(Z—I) = B

Theorem 1 Under Assumption 1,suppose that
Az R(2™") has its all poles inside the unit cir-
cle and salisfies the following inequalily

15" < JAGETYRE, at ]27 =1 (9)
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then the feedback system is stable.

In order to prove this theorem, we need the
following Lemma 1 and Lemma 2.

Lemma 1 Let the nth polynomial f(z), with real
coefficients, have all its roots outside the unit cir-
cle, then

() = 1f*(2)], at |2] =1 (10)
where

f(z) (11)
and, f*(z) is the reciprocal polynomial defined by

fr(z) = 2"f(z71)

= fo+ fiz 4+ fa2"

(12)
(Proof) see [3]
Lemma 2 Consider the following equations

[ = AR 286 (19)
o= = ARG (14)

deg{ (=)} =
degly(=")) =

The reciprocal polynomials of the above equations
are given by

ne+d—1 (d— d>
ng+d—1 (d— d>
na—i—cz—l

0)
0)

(a) d>d
[1(2) = (A=) R(2)) + 2798%(2)  (15)
deg{f*(z)} =n. +d—1
(b)d>d
f1(2) = AR =) + $(z)  (16)

deg{f*(2)} =n, +d -1
and X
9" (z) = (A(2)R(2))"
deg{g*(z)} =n.+d—1

where (A(z)R(z))* and $*(z) are the reciprocal
polynomials of (A(2)R(z)) and S(z), respectively.

(17)

(Proof)  From (8), the coeflicient of the low-
est order of S(z71) is added to the dth of
A(z"Y)R(z7"). Note this equal power addition
and that the orders of A(z"1)R(27!) and $(z77)
are ng +d — 1 and n, — 1 respectlvely, and thus
we find that the order of f(z7!) depends on the
sizes of d and d.
Consider the case of d >d

deg{f(z7")}

deg{A(z"")R(=7")}

= ng+d—1 (18)

From the definition of the reciprocal polynomial

(ADRE) =
S*(z) =

z"““i"lA(z_
z"““l.SA'(z_1

Dh(z") (19)

(20)

and taking into account (12), we get the recipro-
cal polynomial of f(z7') as follows

Zna+zf—1f(z—1)

= HHAGETRET) +
(A(2)R(2))" + 24787(2)

1)
5(:)
)

Next, consider the case of d > d

deg{f(z™")} = deg{S(z"1)} +4d

= n,—14+4d (22)

Taking into account (12),(19) and (20), from (22),
we get

) = 2=t
Zna+d—1{A(z—-1)R(z—1) +

= AR () + 57(2)

z_df;'(z_l)}
(23)

This compeletes the proof of Lemma2.

Using Lemma 1 and 2, we prove the theorem.
(Proof of Theorem 1)  Since B(z7!) is as-
sumed to be a stable polynomial, we only examine
the stability of f(271) instead of the characteristic
equation $(27') in (8). The stability of f(271) is
determined by the locations of the roots of f*(z2)
,50 we examine the number of the roots inside the
unit circle by using ¢*(z) = (A(z)R(z))*. From
the assumption of Theorem 1, all roots of ¢*(z)
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exist inside the unit circle. Then, if the {ollowing
inequality is satisfied on the unit circle |z| = 1

1/*(2) = g"(2)] <197 (2)]
then from Rouché’s Theorem[3], f*(z) has the

same number of roots inside the unit circle as
g*(z). As shown in Lemma 2, the order of f*(z)
in the case of d > d differs from that in the case
of d > ci, so we consider them separately. First,
consider the case of d > d, from (14) and (18),
then

deg{f*(2)} = deg{g"(2)} = na +d — 1

f*(2) has the same number of roots as g¢*(z).
Therefore, if all roots of g*(2) exist inside the unit
circle and the inequality in (24) is satisfied, then
all roots of f*(z) exist inside the unit circle. Note
that from Lemma 1 the following equations are
satisfied on the unit circle

1z = gz = 1571 = 5°(=
lo(="11 = 14" R(z"")| = |(A(2) R(2))

Thus, for |27 = 1, eq.(9) is equivalent to eq.(24).
Therefore, if the inequality in (9) is satisfied, then
the characteristic equation (8) is stable. Secondly,
we consider the case of d > d. In this case the
order of f*(z)is n, + d - 1 from (22). Consider
d—d

(24)

25)

)
" (26)

the polynomial 2°7%¢*(z) having the same order
as f*(z). This polynomial has (d — d) roots at
the origin and n, + d — 1 stable roots except the
origin, so it is a stable polynomial. Hence, if the
following inequality is satisfied

1£7(2) -

then all roots of f*(z) exist inside the unit circle.
Because of

|f*(z

I d—

g (2) < g (2)) (@)

*

g Z)I—IS*( )l

7 (2) = I(A(2)R(2))"|

so we get the same result as in the case of d > d.

As the result, when eq.(9) is satisfied, all roots
of ¥(271) exist inside the unit circle, i.e., the
feedback system shown in (7) is stable. This is
the required result.

(28)

) -
! (29)

(
|

From eq.(5) and the proof of Theorem 1, we
find that this condition for stability does not re-
quire the real time delay. When A(z7'), B(z7!)
and C(27") are known, it is expected that there
are some values of d that satisfies the stabil-
ity condition in (9). But, the values depend on
A(z7"),B(z7') and C(27!) only, not on the real
time delay.

The usefulness of this theorem is that from
(9) the stability of the characteristic equation
P(271) can be verified directly, because R(z™")
and S(z7!) can be calculated from eq.(5) without
knowing the real time delay.

One of the methods that examines the inequal-
ity in (9) is to calculate the both sides of eq.(9) nu-
merically, that is, setting 27! = exp(—jw), they
can be calculated easily.

4 Discussion

In order to confirm the effectiveness of the de-
rived condition in terms of sufficiency, we will
compare it with that studied by Gawthrop [4].
The Gawthrop’s condition for stability of the
feedback system requires

(30)

where grp and gpp are the gains of feedforward
and feedback blocks respectively ,shown in Fig.1

and defined by

grF X grp < 1

,d
1

= max |——————— 31

e

grp = muz}a.x|5(z“1)| (32)

Note that the above condition is based on the
Small Gain Theorem[5] and does not require the
real time delay, also.

Since the value of A(z~1)R(z~!) is non-zero ex-
cept in special cases, it follows from egs.(9),(31)
and (32) that

5(=7)]
IA(Z_I)R(Z"I)‘

max,, lS‘(z“

1)|
~ min, |A(z”1)IA{(z"

1)‘
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(33)

X maXx
w

1
A(z)R(=)

The above result points out that the derived
condition has more effectiveness, in terms of suf-
ficiency, than Gawthrop’s. The stability condi-
tion for general modeling error was investigated
by Astrom [6]. This condition, however, requires
the actual knowledge of the modeling error, so the
knowledge of the real time delay, also. In respect
of knowledge of the real time delay, the derived
condition does not require it. For these reasons,
the derived condition seems to be useful in prac-
tice.

5 Examples
[Example 1]

Consider the system

Az = 1-152""+ 0.7272

B(z') = 1+03z7"

C(z™") = 1-0327"+0.35277
d = 2

Table 1. The results of the roots of $(z71),(9)
and the roots of R(z7?).
d | ¢ | (9] Roots of ("1
1 u X
2 S x 12
3 9) X —0.6 & 31.044
4 u X —1.04,-0.0799 + 31.13
5 U X —0 7751 + 30.5678,0.1751 % 31.059
6 |S x -0.8252
—0.4567 £ j0.7398,0.2692  0.8968
718 O | —0.5241 £ ;0.07797,0.2651 & ;0.8409
~0.3¢11 £ ;0.6803
8 S x 0.3535,0.3244 & 0.8798
—0.3123 £ ;0.8505, —0.7889 3 70.3463
9 S X 0.5924, —0.9053, —0.1612 £ ;0.9425
0.4102 £ 10.8586, —0.6825 £ j0.603
10| S x 07101,0.4742 £ y0.8128
—0.5406 £ 0.7621, —0.8694 & 70.2886
—0.01925 £+ ;0.9648
11} 8 x 0.7752, —0.9021
0.09503 4 j0.9473, —0.3R49 £ O 8458
—0.7611 £ y0 4964,0.5144 % ;0.7611
12| S ©O | 08109, —0.2151 £ ;0.2282
0.1776 & 30 9070, —~0.2463 + ;0.8734
~0.6249 + ;0.6276,0.5332 + ;0.7131

The above system satisfies Assumption 1. For
this system, change d used in the MVC design
from 1 to 12. In this case, Table 1 shows the
sets of results are the roots of (27 !), the stabil-
ity condition in (9) and the roots of R(z™"). The
symbols shown in Table 1 denote that the S rep-
resents 1(2"!) be stable and the U be unstable,
and () represents eq.(9) is satisfied and x is not.

In the case of d = 7 and 12, the derived con-
dition (9) is satisfied and 1(z7") is a stable poly-
nomial. In the other cases, eq.(9) is not satisfied
but ¥(27!) is a stable polynomial. The reasons
for this are that the derived condition provides
sufficient condtion only, and R(z7!) has the un-
stable roots in the case of d =2-5 in spite of (z)
being stable.

[Example 2]

Consider the system

Az = 14 0.22"" 4+ 0.4427%2 — 0.40827°
B(z™") = 05+ 0.3527"
C(z™Y) = 1-04z7" 404277

d = 3

The above system satisfies Assumption 1. The set
of results are shown in Table 2. Looking over the
results in the case of d =8 and 11, it is found that
the derived condition is superior to the condition

in (30).

Table 2. The results of the roots of {(271),(9)
and (30).
d [ vz | Ba(9) | Eal30)
1 U X X
2 U x X
3 S X X
4 U X X
5 S X X
6 U X X
7 S X X
8 S e} X
9 S x X
10 N @] O
11 S ) X
12 S (e} o
13 S @] O
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Now, using the presented condition, we give a
simple design procedure to stabilize the unstable
feedback system caused by mismatch of time de-
lay. From Theorem 1, if all roots of the polyno-
mial A(z‘l)fi(z_l) exist inside the unit circle and
eq.(9) is satisfied, then the feedback system is sta-
ble. Therefore, not using g(z“]) in (5) directly,
if we can select the appropriate value a such that
a value a|8(z™")] instead of [S(z71)| satisfies the
derived condition in (9), the stabilized feedback
system can be constructed. R

For an example, we consider the case of d = 2
in Example.2. In this case, A(z-‘l)]}(z”l) has all
its poles inside the unit circle, so this satisfies
the assumption of Theorem 1. Fig.2 shows the
trajectries of @|$(z7")| and |A(z")R(z™")
w=0—2r, with 27! = ezp(—jw). In the case
of & = 1, the two trajectories of |$(z71)| and
|A(z71)R(271)| intersect at six points, and the
characteristic equation (z7') is unstable. In the
case of & = 0.3, the trajectory of a|S(z™")] is un-
der that of [A(z™")R(z™")| for w = 0 — 27, and
thus,from the presented condition, 1(z7') is sta-

ble.

V.Ss.

6 Conclusion

In this paper, we have presented a stability
condition based on the characteristic equation for
MVC with mismatch of time delay. IHere, the sta-
bility conditions require the actual knowledge of
the system in general, so they can not be used in
practice. On the other hand, limiting in respect of
knowledge for the real time delay, the presented
condition does not require it. Though the pre-
sented condition is sufficient, it is found from the
theoretical investigation that the presented con-
dition is superior to that in the sense of the Small
gain theorem. Furthermore, this condition can be
verified easily by numerical calculation. Finally,
even though the actual value of the real time delay
is not known, a simple design procedure, based on
the presented condition, which can stabilize the
unstable feedback system caused by mismatch of
time delay is shown.

Figure 2: The trajectries of |[A(z7")
alS(zD| vs. w=0-2nr.
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