• Title/Summary/Keyword: real terrain

Search Result 264, Processing Time 0.026 seconds

Development of Forest Road Network Model Using Digital Terrain Model (수치지형(數値地形)모델을 이용(利用)한 임도망(林道網) 배치(配置)모델의 개발(開發))

  • Lee, Jun Woo
    • Journal of Korean Society of Forest Science
    • /
    • v.81 no.4
    • /
    • pp.363-371
    • /
    • 1992
  • This study was aimed at developing a computer model to determine rational road networks in mountainous forests. The computer model is composed of two major subroutines for digital terrain analyses and route selection. The digital terrain model(DTM) provides various information on topographic and vegetative characteristics of forest stands. The DTM also evaluates the effectiveness of road construction based on slope gradients. Using the results of digital terrain analyses, the route selection subroutine, heuristically, determines the optimal road layout satisfying the predefined road densities. The route selection subroutine uses the area-partitioning method in order to fully of roads. This method leads to unbiased road layouts in forest areas. The size of the unit partitiones area can be calculated as a function of the predefined road density. In addition, the user-defined road density of the area-partitioning method provides flexibility in applying the model to real situations. The rational road network can be easily achived for varying road densities, which would be an essential element for network design of forest roads. The optimality conditions are evaluated in conjuction with longitudinal gradients, investment efficiency earthwork quantity or the mixed criteria of these three. The performance of the model was measured and, then, compared with those of conventional ones in terns of average skidding distance, accessibility of stands, development index and circulated road network index. The results of the performance analysis indicate that selection of roading routes for network design using the digital terrain analysis and the area-partitioning method improves performance of the network design medel.

  • PDF

Attribute Data Management for Developing the Database of a 3D Earthwork BIM System (3D 토공 BIM 시스템 데이터베이스 구축을 위한 속성 데이터 관리)

  • Moon, Sungwoo;Seo, Jongwon
    • Journal of KIBIM
    • /
    • v.6 no.4
    • /
    • pp.27-34
    • /
    • 2016
  • A Building Information Model (BIM) is an attempt to simulate the process of building structures in a three-dimensional (3D) digital space. While the technology is usually applied to structured buildings, bridges, and underground facilities, it is rarely applied to an unstructured environment of earthwork operations. If a BIM is used for earthworks, the 3D simulation can be used for construction equipment guidance and earthwork management. This paper presents a real-time, 3D earthwork BIM that provides a 3D graphical simulation of excavators in conjunction with geographic modeling. Developing a real-time, 3D earthwork BIM requires handling a variety of factors, such as geographical information and vehicular movement. This paper mainly focuses on the management of these attributes and provides a database design for storing and retrieving data. In an example application, a prototype of the 3D earthwork BIM is presented to understand what it would provide when used during earthwork operations at a construction site.

Environment-Adaptive and Real-Time Rendering of Fluids for Cartoon Style Game (카툰 스타일 게임을 위한 환경 적응적 실시간 유체 렌더링)

  • Kim, Kwang-Tae;Park, Kyoung-Ju
    • Journal of Korea Game Society
    • /
    • v.12 no.5
    • /
    • pp.57-66
    • /
    • 2012
  • This paper to the scene to fit the fluid can be expressed as cartoon-style real-time method is proposed. As a matter of fact the fluid color in the simulation in which both reflection refraction and color tones are different in both cases. This paper light, water, terrain, time, etc. with cartoon-style representation of the fluid, adaptive way is proposed. Experimental implementation of the existing and proposed methods were compared with the results. This cartoon-style rendering of the existing research methods and the proposed method and at the same time using cartoon-style games that can be represented by the entire system could offer.

Performance Assessment of a Lithium-Polymer Battery for HEV Utilizing Pack-Level Battery Hardware-in-the-Loop-Simulation System

  • Han, Sekyung;Lim, Jawhwan
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.6
    • /
    • pp.1431-1438
    • /
    • 2013
  • A pack-level battery hardware-in-the-loop simulation (B-HILS) platform is implemented. It consists of dynamic vehicle models using PSAT and multiple control interfaces including real-time 3D driving and GPS mode. In real-time 3D driving mode, user can drive a virtual vehicle using actual drive equipment such as steering wheel and accelerator to generate the cycle profile of the battery. In GPS mode, actual road traffic and terrain effects can be simulated using GPS data while the trajectory is displayed on Google map. In the latter part of the paper, several performance tests of an actual lithium-polymer battery pack are carried out utilizing the developed system. All experiments are conducted as parts of actual development process of a commercial battery pack adopting 2nd generation Prius as a target vehicle model. Through the experiments, the low temperature performance and fuel efficiency of the battery are quantitatively investigated in comparison with the original nickel-metal hydride (NiMH) pack of the Prius.

Review of Operational Multi-Scale Environment Model with Grid Adaptivity

  • Kang, Sung-Dae
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.10 no.S_1
    • /
    • pp.23-28
    • /
    • 2001
  • A new numerical weather prediction and dispersion model, the Operational Multi-scale Environment model with Grid Adaptivity(OMEGA) including an embedded Atmospheric Dispersion Model(ADM), is introduced as a next generation atmospheric simulation system for real-time hazard predictions, such as severe weather or the transport of hazardous release. OMEGA is based on an unstructured grid that can facilitate a continuously varying horizontal grid resolution ranging from 100 km down to 1 km and a vertical resolution from 20 -30 meters in the boundary layer to 1 km in the free atmosphere. OMEGA is also naturally scale spanning and time. In particular, the unstructured grid cells in the horizontal dimension can increase the local resolution to better capture the topography or important physical features of the atmospheric circulation and cloud dynamics. This means the OMEGA can readily adapt its grid to a stationary surface, terrain features, or dynamic features in an evolving weather pattern. While adaptive numerical techniques have yet to be extensively applied in atmospheric models, the OMEGA model is the first to exploit the adaptive nature of an unstructured gridding technique for atmospheric simulation and real-time hazard prediction. The purpose of this paper is to provide a detailed description of the OMEGA model, the OMEGA system, and a detailed comparison of OMEGA forecast results with observed data.

  • PDF

3D Visualization for Situational Awareness of Air Force Operations (공중작전 상황인식을 위한 3차원 가시화)

  • Kim Seong-Nam;Choi Jong-ln;Kim Chang-Hun;Lim Cheol-Su
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.32 no.6
    • /
    • pp.314-323
    • /
    • 2005
  • This paper proposes a real-time 3D visualization system for situational awareness of Air force operations. This 3D system of situational awareness supports a high-level commander of Air force during the war game operations. These situation aware supporting data such as the aircraft track data of radar, aircraft schedule database, map and satellite image data are integrated into one structured data and those are visualized as 3D structure. By using an Out-of-Core method, we can visualize a 3D huge data in real-time in mobile notebook environment. The experiment shows several examples of 3D visualization supporting situation awareness for Air force operation.

A study on high ozone concentration in Shiwha.Banwol industry complex using photochemical air pollution model- Analysis of meteorological characteristics - (시화.반월단지지역의 고농도 오존일에 대한 광화학모델 적용 연구 - 기상특성에 대한 분석 -)

  • An, Jae-Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.5
    • /
    • pp.47-59
    • /
    • 2011
  • The purpose of this paper is to simulate the high ozone concentration in Shiwha Banwol indusrial complex. High pollution episodes (ozone alert) of this area are the results of geographical location and its air pollutants emission. This research has used meteorological model (RAMS) and photochemical air pollution Model (CIT model). As first step of the evaluate of this combined model system simulations are done in terms of meteorological characteristics like wind fields, PBL-height, etc.. Numerical simulations are carried out with real meteorological synoptic data on June. 24-25, 2010. In comparison with real measurement and another research the model reflects well local meteorological phenomena and shows the possibility to be utilized to analyse the pollutant dispersion over irregular terrain region. The high ozone concentration is deeply correlated to the ambient air temperature, wind speed and solar radiation. Local meteorological phenomena like sea-land breeze impact on horizontal dispersion of ozone. This analysis of meteorological characteristics can, in turn, help to predict their influences on air quality and to manage the high ozone episodes.

Application on the New Technology of Construction Structures Disaster Protection Management based on Spatial Information

  • Yeon, Sangho
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.10 no.3
    • /
    • pp.136-145
    • /
    • 2018
  • The disaster monitoring technique by combination of the measurement method and the fine precision of the sensor collecting the satellite-based information that can determine the displacement space is available in a variety of diagnostic information and the GIS/GNSS by first sensor it is being requested from them. Be large and that the facility is operated nationally distributed torsional displacement of the terrain and facilities caused by such natural disasters progress of various environmental factors and the surroundings. To diagnose this spatial information, which contains the various sensors and instruments tracks the precise fine displacement of the main construction structures and the first reference in the Geospatial or more three-dimensional detailed available map and location information using the installed or the like bridges and tunnels produced to a USN/IoT change at any time, by combining the various positioning analysis of mm-class for the facility main area observed is required to constantly in the real time information of the USN/IoT environment sensor, and to utilize this as a precise fine positioning information by UAV/Drone to the precise fine displacement of the semi-permanent infrastructures. It managed to be efficient management by use of new technologies, analyzing the results presented to a method capable of real-time monitoring for a large structure or facility to construction disaster prevention.

3D Visualization for Flight Situational Awareness using Google Earth (구글 어스를 이용한 비행 상황인식을 위한 3차원 시각화)

  • Park, Seok-Gyu;Park, Myeong-Chul
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.12
    • /
    • pp.181-188
    • /
    • 2010
  • This paper proposes 3D visualization systems for the real-time situation awareness and a state information of the aircraft. This system was embodied with OpenGL and the Google Earth of web base using situation data of the aircraft. The existing system has problem which speed decrease and visible restricted map because massive data of terrain and satellite photo. This system is supports the visualization tool which is economic and entire area for a real-time situation awareness with minimum flight information using Open-API of the Google Earth. Also provides a visible convenience to expansion-view using multiple location information. This research result could be used to system for the situation awareness of the aircraft from web environment.

Adaptive Success Rate-based Sensor Relocation for IoT Applications

  • Kim, Moonseong;Lee, Woochan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.9
    • /
    • pp.3120-3137
    • /
    • 2021
  • Small-sized IoT wireless sensing devices can be deployed with small aircraft such as drones, and the deployment of mobile IoT devices can be relocated to suit data collection with efficient relocation algorithms. However, the terrain may not be able to predict its shape. Mobile IoT devices suitable for these terrains are hopping devices that can move with jumps. So far, most hopping sensor relocation studies have made the unrealistic assumption that all hopping devices know the overall state of the entire network and each device's current state. Recent work has proposed the most realistic distributed network environment-based relocation algorithms that do not require sharing all information simultaneously. However, since the shortest path-based algorithm performs communication and movement requests with terminals, it is not suitable for an area where the distribution of obstacles is uneven. The proposed scheme applies a simple Monte Carlo method based on relay nodes selection random variables that reflect the obstacle distribution's characteristics to choose the best relay node as reinforcement learning, not specific relay nodes. Using the relay node selection random variable could significantly reduce the generation of additional messages that occur to select the shortest path. This paper's additional contribution is that the world's first distributed environment-based relocation protocol is proposed reflecting real-world physical devices' characteristics through the OMNeT++ simulator. We also reconstruct the three days-long disaster environment, and performance evaluation has been performed by applying the proposed protocol to the simulated real-world environment.