
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 9, Sep. 2021 3120
Copyright ⓒ 2021 KSII

This work was supported by Incheon National University Research Grant in 2020(2020-0136).

http://doi.org/10.3837/tiis.2021.09.002 ISSN : 1976-7277

Adaptive Success Rate-based Sensor
Relocation for IoT Applications

Moonseong Kim1 and Woochan Lee2*

1 Department of IT Convergence Software, Seoul Theological University
Bucheon 14754, Republic of Korea

[e-mail: moonseong@stu.ac.kr]
2 Department of Electrical Engineering, Incheon National University

Incheon 22012, Republic of Korea
[e-mail: wlee@inu.ac.kr]

*Corresponding author: Woochan Lee

Received January 7, 2021; revised March 13, 2021; accepted March 28, 2021;
published September 30, 2021

Abstract

Small-sized IoT wireless sensing devices can be deployed with small aircraft such as drones,
and the deployment of mobile IoT devices can be relocated to suit data collection with efficient
relocation algorithms. However, the terrain may not be able to predict its shape. Mobile IoT
devices suitable for these terrains are hopping devices that can move with jumps. So far, most
hopping sensor relocation studies have made the unrealistic assumption that all hopping
devices know the overall state of the entire network and each device's current state. Recent
work has proposed the most realistic distributed network environment-based relocation
algorithms that do not require sharing all information simultaneously. However, since the
shortest path-based algorithm performs communication and movement requests with terminals,
it is not suitable for an area where the distribution of obstacles is uneven. The proposed scheme
applies a simple Monte Carlo method based on relay nodes selection random variables that
reflect the obstacle distribution's characteristics to choose the best relay node as reinforcement
learning, not specific relay nodes. Using the relay node selection random variable could
significantly reduce the generation of additional messages that occur to select the shortest path.
This paper's additional contribution is that the world's first distributed environment-based
relocation protocol is proposed reflecting real-world physical devices' characteristics through
the OMNeT++ simulator. We also reconstruct the three days-long disaster environment, and
performance evaluation has been performed by applying the proposed protocol to the
simulated real-world environment.

Keywords: Hopping Sensor, Mobile IoT, Reinforcement Learning-based Protocol,
Relocation Protocol, Sensory Data Networking, Simulation

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 9, September 2021 3121

1. Introduction

Artificial Intelligence (AI) technology is generally focusing on collecting and analyzing vast
amounts of data [1]. However, if a problem occurs in collecting some data, it is complicated
to find an abnormal point because the data volume is infinitely large [2]. Therefore, in recent
years, the technology that can continuously collect data in the observation area attracts
attention as a significant issue.

With the development of Internet of Things (IoT) devices, it has become easier to collect
various data. For example, to collect data in an area where human access is not possible,
sensing devices could be scattered by Unmanned Aerial Vehicles (UAV) such as drones (see
Fig. 1). However, it is not easy to evenly deploy small IoT devices through scattering in the
drones. Accordingly, it is difficult to collect accurate data, and a small device's energy may be
exhausted due to the continuous collection of inaccurate data, and unexpected device defects
may occur. In the worst case, the whole network communication could be disconnected, and
data collection may no longer be possible [3]. An area where it is difficult to collect data
anymore is called a sensing hole.

The ideal way to recover the sensing hole is to move the mobile IoT sensing device directly
to the sensing hole to enable data collection. In general, early research on the movement of
mobile sensors was a method using wheels. However, the wheel has a limitation, challenging
to move in a rough area with many obstacles. To overcome the limitations of wheel-based
movement, an IoT hopping sensor device in which the sensor jumps and moves in the desired
direction has been proposed [4, 5]. Since the hopping sensor node moves in a jump, it is
straightforward to migrate in areas such as rocks or sand. In addition, the hopping sensor node
is able to adjust the data transmission radius because data can be transmitted while jumping.
For example, the authors of the paper [6] studied that the data transmission radius can increase
about six times compared to the ground communication radius when a hopping node jumps
1m from the ground. The author of the paper [7] implemented a projectile to implement a
hopping sensor.

In recent decades, various hopping sensor relocation algorithms have been researched. In
the representative paper [8] based on Dijkstra's algorithm, recovering the sensing hole by
relocating hopping sensor nodes in the cluster zone on the shortest path to the sensing hole
was first proposed. Also, in the study of [9], relocating the hopping sensor according to the
level of rugged terrains was first studied. However, various studies [10-12] set up paths using
all the current network information, including all hopping sensor nodes' statuses. For instance,
an unrealistic assumption is that the location and the level of rugged terrains in each area are
figured out. Even if the network area is minimal, it is practically impossible for all nodes to
exchange information and establish routes.

Recently, our research group solved this problem in the paper [13]. Every sensor node does
not need to know the surrounding sensor nodes' information and the entire network
environment. It is a relocation protocol based on the distributed networking that recovers the
sensing hole by requesting sensor nodes for relocation from nearby areas. Using this relocation
protocol [13], the paper [14] proposed a protocol to recover the sensing hole by predicting
rugged terrains' level based on the relocation's success rate. However, the shortest path-based
relocation protocols repeatedly use specific neighbor areas while requesting nodes needed. In
particular, if the distribution of rugged terrains in the relocation paths is not uniform, a request
in a direction having a high movement success rate will be appropriate. It may be necessary to
avoid the method based on the shortest path and, it could be useful to manage the distribution
of rugged terrains in each direction.

3122 Kim et al.: Adaptive Success Rate-based Sensor Relocation for IoT Applications

Reinforcement learning is a very well-known machine learning method [15]. For the best
policy decision, the policy is decided by applying the maximum reward. The reward is
repeatedly calculated by considering samples in a given environment, and the samples are also
continuously updated. In this paper, in order to request hopping member nodes to move, the
selection of relay nodes that will transmit the request message of the sensing hole cluster
header is solved with reinforcement learning. A relay node selection random variable is
considered to select the best relay node among the relay node candidates. A simple Monte
Carlo approach is applied to choose the most accomplished relay node based on the selected
random variable, and the random variable is reinforced continuously. This method could
reduce a large number of network traffic generated by existing relocation methods. Also, by
overcoming the limitation of repeatedly selecting specific relay nodes based on the shortest
path, it makes sure to increase the relocation success rate of the hopping sensors remarkably.
In addition, (in the world, no research team has been able to proceed with) we first simulate
the proposed hopping sensor relocation protocol based on a distributed networking using
OMNeT++ similar to the real environment [16].

This paper is organized as follows. Section 2 explains previously proposed relocation
protocols based on the distributed environment, and Section 3 describes the proposed hopping
sensor relocation protocol. Section 4 describes the simulation and performance evaluation and
finally concludes in Section 5.

2. Previous Work
In this Section, a survey of the relocation protocols that have been studied so far is provided,
and primary considerations are described to explain the new relocation protocol proposed in
the next Section. In addition, relocation protocols to be compared together are also briefly
described to help to understand this study.

2.1 Relocations for Hopping Sensors
Various hopping sensor relocation algorithms have been proposed in recent decades. A

hopping sensor's characteristic is that it is possible to perform a movement in rough areas such
as disaster areas by jumping rather than by general means of movement, such as wheels. The
authors of [9, 14] studied that the relocation performance could be improved using a hopping
sensor in an obstacle-distributed environment. Furthermore, it is also possible to extend the
data transfer radius of the sensor nodes through jumps. The authors of [6] confirmed in an
experiment that a sensor node could adjust its communication radius while jumping to an
appropriate height. For example, they showed that if a sensor node jumps 1m from the ground,
it can be increased by about six times than a typical radius of communication on the ground.
The authors of [7] directly measured the transmission radius according to the height change
from the ground using a jumping launcher. Extensions of the communication radius over
jumps can improve the connectivity of sensor nodes across the network, and in this paper, we
also leverage these mechanisms in setting the management area of the cluster header.

The study of hopping sensors-based relocation algorithms began with the authors of [8]
proposing a scheme to recover a sensing hole by relocating some hopping nodes on the shortest
paths between the sensing hole and the cluster zones. However, another sensing hole occurs
quickly as hopping sensors move through specific clusters on the shortest path and repeatedly
send request messages for relocation to headers in neighboring cluster regions. Furthermore,
some hopping sensors in these cluster regions had limitations that repeated movements could

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 9, September 2021 3123

lead to losing their movement capabilities. To address this problem, the authors of [10] set up
the most disjoint path to avoid duplicating the relocation path as much as possible when
multiple sensing holes occur. Furthermore, the authors of [11] utilized the relocation policy of
multi-path sensor nodes instead of the shortest paths. These studies have improved the
migration success rate of sensors and hopping sensors' capability across the network over
shortest path-based relocation schemes.

However, the studies mentioned above establish paths for real-time relocation using all the
information in the current entire network by all the cluster headers and nodes. Even though the
network area is minimal, it is practically impossible for all cluster headers to exchange
information and set paths, and so many control messages are sent and received. To overcome
these limitations, the authors of [13] proposed a distributed manner-based relocation protocol.
Every sensor node needs not know any information about the surrounding sensor nodes and
the entire network. It is only that the header of the sensing hole requests the neighboring cluster
header the required number of sensor nodes for sensing hole recovery. Using this mechanism,
the authors of [14] predicted obstacle levels based on relocation success rates. Besides, the
authors of [17] further improved the distributed-based relocation protocol by addressing the
limitations (such as the well-known ping-pong problem) arising from the paper [13].

2.2 Basic Terms and Relocation Strategy
As shown in Fig. 1, after scattering IoT hopping sensors using UAV in disasters or military
areas that are not accessible to humans, data of interest can be gathered for big data analysis.
All the sensors initially deployed can be divided into several appropriate cluster zones with
various clustering algorithms [18]. Sensors in each cluster zone center are elected as cluster
headers (HA, HB, ...), and sensors in the same zone as cluster headers are called member nodes
(M1, M2, ...). The cluster header communicates to figure out information of its member nodes
periodically. This paper supposes that network clustering and header selection are possible
using various well-known algorithms, and further discussion is omitted.

Fig. 1. Relocation algorithm in [13]

The hopping sensor is able to jump to have communication with adjacent sensors, and each

sensor can know its location using the GPS unit. As shown in Fig. 1, a blue line indicates the
hopping sensor's transmission radius on the ground. A red line indicates the maximum
transmission radius that can communicate by jumping as high as possible. The cluster header's
maximum transmission radius area is defined as a cluster zone; thus, direct communication

3124 Kim et al.: Adaptive Success Rate-based Sensor Relocation for IoT Applications

between cluster headers is likely impossible. There is a possibility that some member nodes in
the area intersect the cluster zones, and they can communicate with more than one cluster
header. These member nodes are called relay nodes, and the role of relay nodes serves to
transmit data in the middle for communication between cluster headers [19].

When a sensing hole occurs because the number of sensor nodes required for data collection
in a cluster zone is insufficient, the sensing hole's cluster header requests relocation of member
nodes necessary for sensing hole recovery in the adjacent cluster zone. Fig. 1 describes a
simple example of the most representative relocation protocol [13], and the message types are
shown in Table 1. In the next section, the proposed scheme also uses some of the message
types described below. (In advance, RELAY and RELAY-ACK messages are not used in the
proposed protocol.)

Table 1. Message type and description for the relocation protocol in Fig. 1
Type Description/Format

HELLO
 The header checks the state of its zone with periodic broadcasting.
 { type, source address, destination address (broadcasting) }

HELLO-ACK
 Member node sends relay node field (T/F) in response to receiving

HELLO message.
 { type, src address, dst address (header), relay node field (T/F) }

RELAY
 The header performs multicasting on the relay nodes to select the

appropriate relay nodes.
 { type, src address, dst addresses (relay nodes) }

RELAY-ACK
 Relay nodes receive RELAY and then answer.
 { type, src address, dst address (header) }

REQ

 Header requests a relay node to move hopping sensors for sensing
hole recovery

 { type, src address, dst address (relay), # of req. members, sensing
hole header address, header GPS information }

MOVE

 Header sends moving commands to the selected members by
multicasting.

 { type, src address, dst address (hopping members), sensing hole
header address, sensing hole header GPS information }

Each cluster header (HA, HB) periodically broadcasts a HELLO message in each cluster

zone, and it can continuously check the states of the hopping sensor member nodes in its area.
Member nodes should respond to their states to their headers and inform that they are relay
nodes through HELLO-ACK messages if they have received HELLO messages more than one.
If the initial network policy identifies lower than a certain number of member nodes, the cluster
header can determine that its cluster zone has become a sensing hole. In Fig. 1, the cluster
header HC determines that a sensing hole occurs, and a brief look at the relocation strategy
performed to recover it is as follows:

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 9, September 2021 3125

Step 1. The cluster header HC multicasts RELAY messages to all its relay nodes (R2, R3)
to request one member node required from any neighboring cluster zones (Clusters B and D).

Step 2. Each relay node immediately sends a RELAY-ACK message in response to the
RELAY message received, and here, the reply from R2 arrives at the HC the fastest. R3
responses to be received later are ignored. (In other words, we can know that it is the shortest
path-based relocation method by selecting the relay node that responded fastest.)

Step 3. Cluster header HC transmits a REQ message to the chosen relay node R2 to request
one sensor required.

Step 4. The relay node R2 immediately delivers the REQ message received from the cluster
header HC to another its cluster header HB.

Step 5. The cluster Header HB chooses M3 as a movable hopping sensor member node and
sends a MOVE message to move to cluster zone C. Upon receiving the message, and the
member node M3 moves to the neighboring sensing hole cluster zone.

Step 6. Simultaneously, the cluster header HB predicts that its zone will also be a sensing
hole and sends a REQ message to the relay node R1 to request one sensor needed. (Of course,
there is a relay node selection process for sending REQ messages here, but it has been omitted.)

Step 7. The relay node R1 also delivers its REQ message to cluster header HA.
Step 8. Cluster Header HA selects M2 from sensor node members inside its zone and orders

the move to cluster zone B.

As a result, one sensor is appropriately relocated inside each cluster zone, so that all sensing
holes can be recovered.

2.3 Improved Relocation Mechanism to Overcome Obstacle Environment
In general, the environment in which the hopping sensor is considered is not a flat terrain.
When considering the topographic information about obstacles around the cluster zone, it is
necessary to consider defects that may occur during movement. In the paper [14], it was
possible to increase the sensing hole recovery rate by indirectly predicting the distribution state
of obstacles (stone, mud, sinkhole, etc.) around the sensing hole.

(a) (b)

Fig. 2. Scenarios to describe existing relocation methods in [13, 14]

First, let us look at a typical member node relocation scenario that does not consider

obstacles. In cluster zone B of Fig. 2(a), there are node failures because two members ran out
of energy. After a while, the header HB determines that its zone is a sensing hole and requests

3126 Kim et al.: Adaptive Success Rate-based Sensor Relocation for IoT Applications

two member nodes necessary for cluster zone A. Two member nodes (M1, M2) ordered move
from zone A move to zone B. One member (M1) is caught in an obstacle and failed to move
to zone B, but the other (M2) is succeeded in moving to zone B. Zone B's header determines
a sensing hole again and requests additional member movement to zone A. In Fig. 2(b),
member M3 of zone A fails to move to zone B because of an obstacle again during movement.
In order to overcome the sensing hole, the header of zone B requests the movement of one
member from zone A again so that the member M4 succeeds in the movement and recovers
the sensing hole. We have looked at the relocation through three REQ messages to recover the
first sensing hole.

(a) (b)

Fig. 2. Scenarios to describe existing relocation methods in [13, 14]

Second, let us look at the relocation of node members when considering the existence of
obstacles. In cluster zone B of Fig. 2(a), two members' energies are exhausted, resulting in
node failure. After a while, the header HB determines a sensing hole and tries to request two
member nodes from zone A. In the relocation protocol of [14], the number of members
required is calculated by considering the movement success rate. The movement success rate
p and the number of requested members cnt are calculated as follows:

p = (# of members successfully moved) (# of members requested) (1)

cnt = Ceiling [(# of members requested) ⋅ ()()1 1 p+ −] (2)

After setting the initial value of p to 1, the number of member requests is ()()2 1 1 1⋅ + − ,

that is, two members are requested from zone A. In Fig. 2(a), two members are ordered to
move from zone A, and as in the first scenario, one member (M1) fails to move due to an
obstacle, but the other (M2) successfully moves to zone B. In Fig. 2(b), zone B's header
calculates the value of p as 1/2 according to Equation (1), and it determines that the sensing
hole could still not be recovered. The number of members requested from zone A is

()()1 1 1 1/ 2⋅ + − , and two members are requested to move again. For the two members of
zone A, one member (M3) fails to move to zone B as in the previous scenario. The other
member (M4) can successfully move to zone B, so the sensing hole is recovered. We have
looked that two REQ messages used are lower than those of the first scenario's three REQ
messages to recover the sensing hole.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 9, September 2021 3127

The first scenario is the relocation method first proposed in the paper [13], and it aims to
recover the sensing hole quickly based on the shortest path. The second scenario is a relocation
method that indirectly estimates the state of an obstacle considering the success rate of
movement in the paper [14]. There is a profit in that the number of requesting member nodes
could be increased according to the movement success rate so that the sensing hole can be
recovered quickly.

However, many things have been realistically overlooked in these relocation schemes. First,
the assumption that obstacles are evenly distributed is somewhat unreasonable. For example,
the distribution of obstacles in a disaster area is likely not uniform depending on the direction.
Second, both relocation algorithms [13, 14] are the shortest path based schemes. A method of
multicasting a RELAY message to relay nodes and selecting the relay node that sent the
RELAY-ACK message first is used. However, considering the distribution of obstacles, there
is no reason to stick to only the shortest path. In other words, it could be most advantageous
for sensing hole recovery to request necessary member nodes to the cluster zone with the
lowest distribution of obstacles. Therefore, in the next section, we propose how the cluster
header of the sensing hole reflects uneven obstacles to select the appropriate relay node to
transmit the REQ message and how to determine the best policy through reinforcement
learning of the cluster header.

3. Proposed Relocation Protocol
In this section, we explore the problems of how to consider obstacle conditions in existing
studies and propose real-world surrounding obstacle environment predictions through
reinforcement learning.

3.1 Reviewing Problems in Previous Studies
The background picture of Fig. 3 depicted a natural disaster in Kenya in 2018 and is intended
to be used as an example of a non-uniform distribution of obstacles. Researchers initially
deploy sensors evenly as much as possible to analyze the characteristics of the terrain of
interest. However, suppose that the continuing operation of the sensors in cluster zone B
caused an energy defect, making cluster zone B a sensing hole.

Fig. 3. An example of non-uniformly distributed obstacles: Kenya’s Big Crack [20]

Since the two previously introduced relocation algorithms [13, 14] are shortest-path based
relocation algorithms, Fig. 3's sensing hole cluster header HB will probably choose relay node

3128 Kim et al.: Adaptive Success Rate-based Sensor Relocation for IoT Applications

R2 to request member nodes needed for sensing hole recovery. However, no matter how much
the relocation algorithm in [14] predicts the level of obstacles and requests additional hopping
sensor member nodes beyond the required number, an obstacle status of Fig. 3 will most likely
result in a continuous movement failure. After all, it is clear that continuous selection of relay
node R2 on the shortest path basis will be fundamentally wrong, with additional costs such as
multiple member-movement defects and message transmission.

To overcome the selection of only specific relay nodes, which is the shortest path-based
limit, a recent paper [17] proposes a method of selecting relay nodes to some extent equally
using queues. The cluster headers queue the information of relay nodes in the order in which
they received the RELAY-ACK messages and then sequentially pull them out of the queue to
perform the selection of relay nodes so that they are not skewed. However, in obstacle
environments such as Fig. 3, there is still a possibility that about half of the requests for
movement (i.e., zone C of clusters zone A and C) will fail.

3.2 The Proposed Relocation Algorithm
Fig. 4 shows the mechanism of the cluster header unit that executes the proposed relocation
algorithm. In Fig. 4(a), the header broadcasts the HELLO message from Table 1 to his zone.
In Fig. 4(b), when the header receives HELLO-ACK messages, it identifies the relay nodes
among each member node. In Fig. 4(c), the header identifies and counts the member nodes
except the relay nodes. In Fig. 4(d), the header determines if his zone has become a sensing
hole. If identified as a sensing hole, the header requests the neighboring zone for the member
nodes he needs through the algorithm of Fig. 5.

Fig. 4. Header unit of hopping sensor member node

The algorithm for the REQ Unit of Fig 4 is presented in Fig 5. In Fig. 5, lines 01-05
describe the input and output values. Line 02 is a set (Relay) of the relay nodes, and Line 03
is a set (tP) of the time instance t in which the sensing hole occurred and the success rates
for each relay node that reflects the success rate of the requested moving nodes through the
selected relay node. Line 04 is a set (tR) of relay node selection random variables used at the

1t + point in time. Line 05 defines REQ messages as output values sent during the time (T)
the cluster header is operational.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 9, September 2021 3129

Lines 06-07 are initializations for success rate and random variables. The initial relay node
selection probability variables (0R) were all given equal probability distributions (Fig. 4(e)).
Lines 08-18 describe a mechanism for transmitting REQ messages at the time of sensing hole
occurrence t . Line 09 selects the relay node at t -time using 1t−R . The SELECTION()
function can select the best relay node using random variables, such as the Monte Carlo
method (Fig. 4(f)). The number of member nodes to be requested to the selected relay node r
is calculated using the CNT() function (Fig. 4(g)). The CNT() function uses Equation (2) and
success rate variables 1t−P to calculate the cnt of Equation (2). In line 11, the cluster header
sends REQ messages (Fig. 4(h)), waits the next HELLO broadcasting at line 12 (Fig. 4(i)),
and calculates the success rate (p of Equation (1)) at lines 13-14 (Fig. 4(j)).

 01. Input:
 02. { } ... Relay R1, R2, , Rn←

 03. { }2 , t
R1 R Rn
t t tp , p , ... p←P

 04. { }2 , t
R1 R Rn
t t t, , ...← ℜ ℜ ℜR

 05. Output: REQ message including # of members requested and
the selected relay node

 06. { }0 1 1 , 1 , , ...←P

 07. { }0
1 1 1 , n n n, , ...←R

 08. FOR () t T∈ DO

 09. ()1 tr −← RSELECTION

 10. ()1 r
tcnt p −← CNT

 11. (), r cntSEND_REQ

 12. ()Hello Message Interval TimeWAIT

 13. # of members successfully moveds ←

 14. sp
cnt

←

 15. 1 t t−←P P

 16.

1

1

t
r
k

k t mr
t

p p
p

m

−

= − +

 +
 ←
∑

 17.
1

 t
t n

Ri
t

i
p

=

←

∑
P

R

 18. END FOR

Fig. 5. The proposed algorithm for REQ unit of Fig. 4.

3130 Kim et al.: Adaptive Success Rate-based Sensor Relocation for IoT Applications

Lines 15-17 reinforce the set of success rates 1t−P and the set of selection random variables

1t−R to tP and tR . We calculate tP using the most recent 1m − set from a set of success
rates { 0P , 1P , K 2t−P , 1t−P } and the success rate p just calculated. The selection random
variable tR is then calculated by normalizing tP on line 17 (Fig. 4(j)).

3.3 A Case Study for Relocation Algorithm
In the example of Fig. 6, assume that at least five sensor node members are required to recover
the sensing hole. In the paper [14], considering the obstacle environment, the header HB of
cluster zone B detects the sensing hole and delivers RELAY messages to the relay nodes, as
shown in Fig. 6(a). Select relay node R1 closest to it and respond first, and request five
members from neighboring cluster zone A. In Fig. 6(b), five members selected by the header
HA are moving to the sensing hole. Of these, four members were faulted by obstacles, and only
one member was able to move to restore the sensing hole. The header HB, which has yet to
recover the sensing hole, needs four additional members to recover the sensing hole, but using
Equation (2), ()()4 1 1 1/ 5× + − , 8 members are requested. It is likely that R1 will still be
selected as the shortest path base for the selection of relay nodes to be requested, and cluster
zone A will request eight members. However, in the direction of zone A, there are many
obstacles as previously experienced, and there are currently only three member-nodes, so even
if they all succeed in moving, they cannot recover the sensing hole.

(a)

(b)
Fig. 6. Example of relocation algorithms

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 9, September 2021 3131

However, in the proposed method, the header HB of the cluster zone B detects a sensing
hole and manages a random variable for selecting relay nodes. In all the relocation algorithms
presented so far, the relay node was selected as a method of transmitting RELAY and RELAY-
ACK messages, but this process was excluded. Moreover, the relay node selection random
variable is managed by the REQ unit of the cluster header. Initially, for each of the relay nodes
R1 and R2, the success rate variable and the selection random variable are initialized to 0P =
{1, 1} and 0R = {1/2, 1/2}, respectively. As Fig. 6(a), assume that the header HB detects the
sensing hole and selects R1 according to the random variable 0R . In the same way as the
previous example, as Fig. 6(b), suppose that only one member moved to the sensing hole while
five members selected by the header HA were moving to the sensing hole.

The header HB checks that the success rate of relay node R1 changes from 1 to 1/5,
calculates as (1+1/5)/2 = 3/5, and updates as 1P ={3/5, 1} (For simplicity of the example, the
value m in Fig. 5 is set to 2). Therefore, in order to normalize 1P , since 3/5 + 1 = 8/5, the
selection random variable can be reinforced to 1R = {3/8, 5/8}. In Fig. 6(b), according to the
selection random variable 1R , the proposed scheme selects the relay node R2 and requests

four members using the current success rate 2
1
Rp =1. The probability of recovering the sensing

hole could increase. The proposed algorithm does not insist on relay node R1 by considering
the shortest path as a method of transmitting RELAY and RELAY-ACK messages, and
reflects the failure of R1 using the Monte Carlo method. Thus, relay node R2 can be selected
by the result of the best decision making.

4. Performance Evaluation
A performance evaluation of the proposed relocation protocol is performed in this section. For
realistic performance evaluation, the authors made the world's first attempt to completely
implement the simulation using OMNeT++ [16, 21]. As it is well known, implementing the
simulation by OMNeT++ requires considering all layers of the network, and it must have been
a very arduous task as it took years to perfectly implement the movement and communication
of hundreds of hop sensor member nodes. Table 2 provides an overview of the OMNeT++
implementation environment.

Table 2. Simulation environments
Parameters Values

Network area 250m×150m
Number of cluster headers 15

Minimum number of members for each cluster to properly gather data 10
Maximum communication radius for each sensor node 20m
Maximum communication radius when highly jumping 29m

Maximum distance that a sensor node moves forward with one jump 2m
HELLO message interval 15, 30min

Three hundred hopping sensors are randomly distributed in an area of 250 150m m× to

collect data, as shown in Fig. 7. Among them, 15 cluster headers are marked in red, and the
remaining is 285 sensor member nodes. When there are less than ten sensor nodes in a cluster

3132 Kim et al.: Adaptive Success Rate-based Sensor Relocation for IoT Applications

zone, a sensing hole could occur. The transmission radius of each hopping sensor on the
ground is supposed to be 20m. The maximum transmission radius is 29m when the sensor
jumps to the full height. The hopping sensor could move about 2m forward with one jump and
hop up to 130 times. As shown in Fig. 7(b), obstacles are uniform-based randomly generated
with a value of 1% of the total area. The obstacle's size appears more extensive than the actual
size; however, the obstacle is assumed to be a square with a width and length of 1m. Just for
the visual effect, the obstacles are made to appear larger. A cluster header broadcasts a HELLO
message every 15 minutes to detect that its zone is a sensing hole. For the relocation protocol's
performance analysis, a sensing hole is created in the central cluster zone, as shown in Fig. 7
and Fig. 10. To generate the sensing hole, we assume a scenario that the member nodes
continuously collect data, so the nodes' energy is rapidly consumed. Every sensor member
node in the central cluster generates an event of data collection under an exponential
distribution with an average of 5 minutes. For convenience, the initial energy value for sensing
is set to 100, and 1 (energy consumption) is reduced for each event. The pseudocode's value
m in Fig. 5 for the relay node selection random variable of the proposed scheme is set to 2 for
simplicity. The simulation time is set to three days.

(a) (b)

Fig. 7. Snapshot of the simulation topologies

Fig. 8. Standard deviation for relay node selection

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 9, September 2021 3133

Fig. 8 shows the standard deviation values of the frequency of relay nodes selected to
request necessary sensors by the central cluster header when the zone becomes a sensing hole.
In the existing method [14], since the relay node that responds fastest is intensively selected
(i.e., the shortest path-based mechanism), we can check that the standard deviation value is
very high. In other words, there is a wide variation for relay node selection. However, it can
be seen that the relay node selection of the proposed method is uniformly selected overall with
a low standard deviation value.

Fig. 9. Number of primary messages generated (with obstacle 1%)

Fig. 9 shows the number of primary (RELAY, RELAY-ACK, and REQ) messages
occurring in the central cluster. The previous scheme establishes the shortest path using these
three types of messages. However, since only the REQ message transmission is generated
using the REQ unit of Fig. 4 in the proposed scheme, the number of messages than the previous
one could be reduced in an enormous amount. Therefore, we can predict that the amount of
primary message generation across the whole network has to be significantly reduced.

Fig. 10. Simulation snapshot for non-uniform obstacle distribution (0.33%) topology

3134 Kim et al.: Adaptive Success Rate-based Sensor Relocation for IoT Applications

To consider the non-uniform distribution of obstacles, we set to establish a topology
environment as Fig. 10. Here, obstacles are non-uniformly generated with a value of 0.33% of
the total area. The HELLO message interval time is 30 minutes. In particular, only the middle
area is considered an environment with many obstacles. Yellow nodes are defective nodes,
and hopping sensor nodes can be seen from solid lines that many movements have occurred
in the north direction to recover the sensing hole.

Fig. 11. Relocation success rate

Fig. 11 explains the success rate for nodes relocation according to the REQ message
transmitted whenever a sensing hole occurs. In the environment shown in Fig. 10, it could be
that the success rate is meager since the previous scheme only requests relocation in a specific
direction. However, we are sure that the proposed method through reinforcement learning
rapidly increases the relocation success rate after 30 hours.

5. Conclusion
It is most desirable to relocate the mobile sensor when a sensing hole condition in which data
collection is impossible due to improper placement of IoT sensor devices or energy depletion
failure. In the most realistic distributed networking-based relocation protocol so far, the
sensing hole's cluster header transmits a request message for sensor relocation to the adjacent
cluster header via a specific relay node at the nearest distance for rapid recovery of physical
faults. However, sticking to specific nodes at the closest distance from such a rough terrain
where the disaster occurred is not an appropriate way to successfully recover sensing holes. If
a disaster occurred in an area where the periphery of that nearby node is challenging to move
around, it would harm the hopping sensor's relocation. Furthermore, frequent use of specific
relay nodes can increase the likelihood of unequal energy use from distributed sensor nodes,
resulting in another node fault.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 9, September 2021 3135

In this paper, we select the best relay node as reinforcement learning by applying a simple
Monte Carlo method based on the relay nodes selection random variables that reflect the
characteristics of the obstacle distribution, rather than the shortest path-based selection policy
when the cluster header of the sensing hole selects relay nodes. The proposed scheme selects
relay nodes with a high success rate and relocates the hopping sensors to recover a sensing
hole. In an environment with no obstacles or uniformly distributed, relay nodes could be
selected evenly. In order to evaluate the proposed scheme’s performance and reflect the actual
physical communication equipment, the well-known OMNeT++ simulator is used. The
proposed method can also reduce the vast number of communication messages compared to
the previous one. In this work, however, there is a limitation that relay nodes managed by the
cluster header are fixed. In real-world disaster areas, a sensor node failure could occur
frequently, so we would need to study how to exclude faulty relay nodes and add new
nominated relay nodes. Also, we plan to research relocation protocols that can appropriately
respond to frequently changing surrounding obstacle environments in the future.

Acknowledgement
This work was supported by Incheon National University Research Grant in 2020(2020-0136).

References
[1] D. Sun, H. Yan, S. Gao and Z. Zhou, “Performance Evaluation and Analysis of Multiple Scenarios

of Big Data Stream Computing on Storm Platform,” KSII Transactions on Internet and
Information Systems, vol. 12, no. 7, pp. 2977-2997, July 2018. Article (CrossRef Link)

[2] J. Camacho, G. Maciá-Fernández, N. M. Fuentes-García, and E. Saccenti, “Semi-Supervised
Multivariate Statistical Network Monitoring for Learning Security Threats,” IEEE Transactions
on Information Forensics and Security, vol. 14, no. 8, pp. 2179-2189, August 2019.
Article (CrossRef Link)

[3] M. Kim, S. Park, and W. Lee, “A Robust Energy Saving Data Dissemination Protocol for IoT-
WSNs,” KSII Transactions on Internet and Information Systems, vol. 12, no. 12, pp. 5744-5764,
December 2018. Article (CrossRef Link)

[4] M. E. Snyder, “Foundations of Coverage Algorithms in Autonomic Mobile Sensor Networks,”
Ph.D. dissertation, Dept. Computer Science, Missouri Univ. of Science and Technology, MO,
USA, 2014.

[5] J. Zhao, J. Xu, B. Gao, N. Xi, F. J. Cintrón, M. W. Mutka, and L. Xiao, “MSU Jumper: A Single-
Motor-Actuated Miniature Steerable Jumping Robot,” IEEE Transactions on Robotics, vol. 29, no.
3, pp. 602-614, June 2013. Article (CrossRef Link)

[6] F. Cintr’on, “Network Issues for 3D Wireless Sensors Networks,” Ph.D. dissertation, Dept.
Computer Science, Michigan State Univ., MI, USA, 2013.

[7] M. S. Kim, “Design of a Transmission Process for Hopping Sensors to Enhance Coverage,” M.S.
thesis, Dept. Mobile Communication Engineering, Sungkyunkwan Univ., Suwon, Republic of
Korea, 2012.

[8] Z. Cen and M. W. Mutka, “Relocation of Hopping Sensors,” in Proc. of 2008 IEEE International
Conference on Robotics and Automation, Pasadena, CA, USA, pp. 569-574, May 19-23, 2008.
Article (CrossRef Link)

[9] M. Kim, M. W. Mutka, and H. Choo, “On Relocation of Hopping Sensors for Rugged Terrains,”
in Proc. of 2010 International Conference on Computational Science and Its Applications,
Fukuoka, Japan, pp. 203-210, March 23-26, 2010. Article (CrossRef Link)

https://doi.org/10.3837/tiis.2018.07.002
https://doi.org/10.1109/TIFS.2019.2894358
https://doi.org/10.3837/tiis.2018.12.008
https://doi.org/10.1109/TRO.2013.2249371
https://doi.org/10.1109/ROBOT.2008.4543267
https://doi.org/10.1109/ICCSA.2010.53

3136 Kim et al.: Adaptive Success Rate-based Sensor Relocation for IoT Applications

[10] M. Kim and M. W. Mutka, “On Relocation of Hopping Sensors for Balanced Migration
Distribution of Sensors,” in Proc. of Computational Science and Its Applications – ICCSA 2009,
pp. 361-371, June 2009. Article (CrossRef Link)

[11] M. Kim and M. W. Mutka, “Multipath-based Relocation Schemes Considering Balanced
Assignment for Hopping Sensors,” in Proc. of IEEE/RSJ International Conference on Intelligent
Robots and Systems, St. Louis, MO, USA, pp. 5095-5100, October 10-15, 2009.
Article (CrossRef Link)

[12] M. Kim and M. W. Mutka, “Recycled ID assignment for relocation of hopping sensors,” in Proc.
of IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks,
Lucca, Italy, pp. 1-3, June 20-24, 2011. Article (CrossRef Link)

[13] M. Kim, S. Park, and W. Lee, “Energy and Distance-Aware Hopping Sensor Relocation for
Wireless Sensor Networks,” Sensors, vol. 19, no. 7, p. 1567, 2019. Article (CrossRef Link)

[14] S. Park, M. Kim, and W. Lee, “Energy-Efficient Wireless Hopping Sensor Relocation Based on
Prediction of Terrain Conditions,” Electronics, vol. 9, no. 1, p. 49, 2020. Article (CrossRef Link)

[15] L. Nie, Z. Ning, M. S. Obaidat, B. Sadoun, H. Wang, S. Li, L. Guo, and G. Wang, “A
Reinforcement Learning-Based Network Traffic Prediction Mechanism in Intelligent Internet of
Things,” IEEE Transactions on Industrial Informatics, vol. 17, no. 3, pp. 2169-2180, March 2021.
Article (CrossRef Link)

[16] OMNeT [Online] https://www.omnetpp.org, Accessed on: March 30, 2021.
[17] M. Kim, S. Park, and W. Lee, “Ping-Pong Free Advanced and Energy Efficient Sensor Relocation

for IoT-Sensory Network,” Sensors, vol. 20, no. 19, p. 5654, 2020. Article (CrossRef Link)
[18] A. S. Rostami, M. Badkoobe, F. Mohanna, H. Keshavarz, A. A. R. Hosseinabadi, and A. K.

Sangaiah, “Survey on clustering in heterogeneous and homogeneous wireless sensor networks,”
Springer, The Journal of Supercomputing, vol. 74, pp. 277-323, 2018. Article (CrossRef Link)

[19] J. Seo, M. Kim, I. Hur, W. Choi, and H. Choo, “DRDT: Distributed and Reliable Data
Transmission with Cooperative Nodes for Lossy Wireless Sensor Networks,” Sensors, vol. 10, no.
4, pp. 2793-2811, 2010. Article (CrossRef Link)

[20] CBSN, “Massive Crack in Earth Opens up in Kenya,” April 2018. [Online] https://youtu.be/RG-
wx-KYnTk, Accessed on: March 30, 2021.

[21] Virdis and M. Kirsche, Recent Advances in Network Simulation: The OMNeT++ Environment and
Its Ecosystem, Switzerland: Springer, 2019.

https://doi.org/10.1007/978-3-642-02457-3_31
https://doi.org/10.1109/IROS.2009.5354323
https://doi.org/10.1109/WoWMoM.2011.5986212
https://doi.org/10.3390/s19071567
https://doi.org/10.3390/electronics9010049
https://doi.org/10.1109/TII.2020.3004232
https://doi.org/10.3390/s20195654
https://doi.org/10.1007/s11227-017-2128-1
https://doi.org/10.3390/s100402793

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 9, September 2021 3137

Moonseong Kim received the M.S. degree in Mathematics, August 2002 and the Ph.D.
degree in Electrical and Computer Engineering, February 2007 both from Sungkyunkwan
University, Korea. He was a Research Professor at Sungkyunkwan University in 2007. From
December 2007 to October 2009, he was a Research Associate in ECE and CSE, Michigan
State University, USA. He was a Deputy Director and a Patent Examiner with Korean
Intellectual Property Office, Daejeon, Korea, from October 2009 to August 2018. In September
2018, he joined the Seoul Theological University, Bucheon, Korea, where he is currently
working as an Assistant Professor and the Head of the Department of IT Convergence Software.
His research interests include wired/wireless networking, sensor networking, mobile
computing, network security protocols, and simulations/numerical analysis. Since March 2009,
he has been an editor of KSII Transactions on Internet and Information Systems (TIIS).

Woochan Lee received the B.S. and M.S. degrees in electrical engineering from Seoul
National University, Seoul, Korea, in 2002 and 2005, respectively, and the Ph.D. degree in
electrical and computer engineering from Purdue University, West Lafayette, IN, USA, in 2016.
He was commissioned as a Full-time Lecturer and a First Lieutenant with the Korea Military
Academy, Seoul, Korea, from 2005 to 2008. He was a Deputy Director and a Patent Examiner
with Korean Intellectual Property Office, Daejeon, Korea, from 2004 to 2017. In 2017, he
joined the Department of Electrical Engineering, Incheon National University, Incheon, Korea,
where he is currently working as an Associate Professor. His current research interests include
computational electromagnetics, numerical analysis, and IoT applications with machine
learning.

