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Abstract 

  
Small-sized IoT wireless sensing devices can be deployed with small aircraft such as drones, 
and the deployment of mobile IoT devices can be relocated to suit data collection with efficient 
relocation algorithms. However, the terrain may not be able to predict its shape. Mobile IoT 
devices suitable for these terrains are hopping devices that can move with jumps. So far, most 
hopping sensor relocation studies have made the unrealistic assumption that all hopping 
devices know the overall state of the entire network and each device's current state. Recent 
work has proposed the most realistic distributed network environment-based relocation 
algorithms that do not require sharing all information simultaneously. However, since the 
shortest path-based algorithm performs communication and movement requests with terminals, 
it is not suitable for an area where the distribution of obstacles is uneven. The proposed scheme 
applies a simple Monte Carlo method based on relay nodes selection random variables that 
reflect the obstacle distribution's characteristics to choose the best relay node as reinforcement 
learning, not specific relay nodes. Using the relay node selection random variable could 
significantly reduce the generation of additional messages that occur to select the shortest path. 
This paper's additional contribution is that the world's first distributed environment-based 
relocation protocol is proposed reflecting real-world physical devices' characteristics through 
the OMNeT++ simulator. We also reconstruct the three days-long disaster environment, and 
performance evaluation has been performed by applying the proposed protocol to the 
simulated real-world environment. 
 
 
Keywords: Hopping Sensor, Mobile IoT, Reinforcement Learning-based Protocol, 
Relocation Protocol, Sensory Data Networking, Simulation 
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1. Introduction 

Artificial Intelligence (AI) technology is generally focusing on collecting and analyzing vast 
amounts of data [1]. However, if a problem occurs in collecting some data, it is complicated 
to find an abnormal point because the data volume is infinitely large [2]. Therefore, in recent 
years, the technology that can continuously collect data in the observation area attracts 
attention as a significant issue. 

With the development of Internet of Things (IoT) devices, it has become easier to collect 
various data. For example, to collect data in an area where human access is not possible, 
sensing devices could be scattered by Unmanned Aerial Vehicles (UAV) such as drones (see 
Fig. 1). However, it is not easy to evenly deploy small IoT devices through scattering in the 
drones. Accordingly, it is difficult to collect accurate data, and a small device's energy may be 
exhausted due to the continuous collection of inaccurate data, and unexpected device defects 
may occur. In the worst case, the whole network communication could be disconnected, and 
data collection may no longer be possible [3]. An area where it is difficult to collect data 
anymore is called a sensing hole. 

The ideal way to recover the sensing hole is to move the mobile IoT sensing device directly 
to the sensing hole to enable data collection. In general, early research on the movement of 
mobile sensors was a method using wheels. However, the wheel has a limitation, challenging 
to move in a rough area with many obstacles. To overcome the limitations of wheel-based 
movement, an IoT hopping sensor device in which the sensor jumps and moves in the desired 
direction has been proposed [4, 5]. Since the hopping sensor node moves in a jump, it is 
straightforward to migrate in areas such as rocks or sand. In addition, the hopping sensor node 
is able to adjust the data transmission radius because data can be transmitted while jumping. 
For example, the authors of the paper [6] studied that the data transmission radius can increase 
about six times compared to the ground communication radius when a hopping node jumps 
1m  from the ground. The author of the paper [7] implemented a projectile to implement a 
hopping sensor. 

In recent decades, various hopping sensor relocation algorithms have been researched. In 
the representative paper [8] based on Dijkstra's algorithm, recovering the sensing hole by 
relocating hopping sensor nodes in the cluster zone on the shortest path to the sensing hole 
was first proposed. Also, in the study of [9], relocating the hopping sensor according to the 
level of rugged terrains was first studied. However, various studies [10-12] set up paths using 
all the current network information, including all hopping sensor nodes' statuses. For instance, 
an unrealistic assumption is that the location and the level of rugged terrains in each area are 
figured out. Even if the network area is minimal, it is practically impossible for all nodes to 
exchange information and establish routes. 

Recently, our research group solved this problem in the paper [13]. Every sensor node does 
not need to know the surrounding sensor nodes' information and the entire network 
environment. It is a relocation protocol based on the distributed networking that recovers the 
sensing hole by requesting sensor nodes for relocation from nearby areas. Using this relocation 
protocol [13], the paper [14] proposed a protocol to recover the sensing hole by predicting 
rugged terrains' level based on the relocation's success rate. However, the shortest path-based 
relocation protocols repeatedly use specific neighbor areas while requesting nodes needed. In 
particular, if the distribution of rugged terrains in the relocation paths is not uniform, a request 
in a direction having a high movement success rate will be appropriate. It may be necessary to 
avoid the method based on the shortest path and, it could be useful to manage the distribution 
of rugged terrains in each direction. 
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Reinforcement learning is a very well-known machine learning method [15]. For the best 
policy decision, the policy is decided by applying the maximum reward. The reward is 
repeatedly calculated by considering samples in a given environment, and the samples are also 
continuously updated. In this paper, in order to request hopping member nodes to move, the 
selection of relay nodes that will transmit the request message of the sensing hole cluster 
header is solved with reinforcement learning. A relay node selection random variable is 
considered to select the best relay node among the relay node candidates. A simple Monte 
Carlo approach is applied to choose the most accomplished relay node based on the selected 
random variable, and the random variable is reinforced continuously. This method could 
reduce a large number of network traffic generated by existing relocation methods. Also, by 
overcoming the limitation of repeatedly selecting specific relay nodes based on the shortest 
path, it makes sure to increase the relocation success rate of the hopping sensors remarkably. 
In addition, (in the world, no research team has been able to proceed with) we first simulate 
the proposed hopping sensor relocation protocol based on a distributed networking using 
OMNeT++ similar to the real environment [16]. 

This paper is organized as follows. Section 2 explains previously proposed relocation 
protocols based on the distributed environment, and Section 3 describes the proposed hopping 
sensor relocation protocol. Section 4 describes the simulation and performance evaluation and 
finally concludes in Section 5. 

2. Previous Work 
In this Section, a survey of the relocation protocols that have been studied so far is provided, 
and primary considerations are described to explain the new relocation protocol proposed in 
the next Section. In addition, relocation protocols to be compared together are also briefly 
described to help to understand this study.  
 

2.1 Relocations for Hopping Sensors 
Various hopping sensor relocation algorithms have been proposed in recent decades. A 

hopping sensor's characteristic is that it is possible to perform a movement in rough areas such 
as disaster areas by jumping rather than by general means of movement, such as wheels. The 
authors of [9, 14] studied that the relocation performance could be improved using a hopping 
sensor in an obstacle-distributed environment. Furthermore, it is also possible to extend the 
data transfer radius of the sensor nodes through jumps. The authors of [6] confirmed in an 
experiment that a sensor node could adjust its communication radius while jumping to an 
appropriate height. For example, they showed that if a sensor node jumps 1m from the ground, 
it can be increased by about six times than a typical radius of communication on the ground. 
The authors of [7] directly measured the transmission radius according to the height change 
from the ground using a jumping launcher. Extensions of the communication radius over 
jumps can improve the connectivity of sensor nodes across the network, and in this paper, we 
also leverage these mechanisms in setting the management area of the cluster header. 

The study of hopping sensors-based relocation algorithms began with the authors of [8] 
proposing a scheme to recover a sensing hole by relocating some hopping nodes on the shortest 
paths between the sensing hole and the cluster zones. However, another sensing hole occurs 
quickly as hopping sensors move through specific clusters on the shortest path and repeatedly 
send request messages for relocation to headers in neighboring cluster regions. Furthermore, 
some hopping sensors in these cluster regions had limitations that repeated movements could 
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lead to losing their movement capabilities. To address this problem, the authors of [10] set up 
the most disjoint path to avoid duplicating the relocation path as much as possible when 
multiple sensing holes occur. Furthermore, the authors of [11] utilized the relocation policy of 
multi-path sensor nodes instead of the shortest paths. These studies have improved the 
migration success rate of sensors and hopping sensors' capability across the network over 
shortest path-based relocation schemes. 

However, the studies mentioned above establish paths for real-time relocation using all the 
information in the current entire network by all the cluster headers and nodes. Even though the 
network area is minimal, it is practically impossible for all cluster headers to exchange 
information and set paths, and so many control messages are sent and received. To overcome 
these limitations, the authors of [13] proposed a distributed manner-based relocation protocol. 
Every sensor node needs not know any information about the surrounding sensor nodes and 
the entire network. It is only that the header of the sensing hole requests the neighboring cluster 
header the required number of sensor nodes for sensing hole recovery. Using this mechanism, 
the authors of [14] predicted obstacle levels based on relocation success rates. Besides, the 
authors of [17] further improved the distributed-based relocation protocol by addressing the 
limitations (such as the well-known ping-pong problem) arising from the paper [13]. 

 

2.2 Basic Terms and Relocation Strategy 
As shown in Fig. 1, after scattering IoT hopping sensors using UAV in disasters or military 
areas that are not accessible to humans, data of interest can be gathered for big data analysis. 
All the sensors initially deployed can be divided into several appropriate cluster zones with 
various clustering algorithms [18]. Sensors in each cluster zone center are elected as cluster 
headers (HA, HB, ...), and sensors in the same zone as cluster headers are called member nodes 
(M1, M2, ...). The cluster header communicates to figure out information of its member nodes 
periodically. This paper supposes that network clustering and header selection are possible 
using various well-known algorithms, and further discussion is omitted. 
 

 

Fig. 1. Relocation algorithm in [13] 

 
The hopping sensor is able to jump to have communication with adjacent sensors, and each 

sensor can know its location using the GPS unit. As shown in Fig. 1, a blue line indicates the 
hopping sensor's transmission radius on the ground. A red line indicates the maximum 
transmission radius that can communicate by jumping as high as possible. The cluster header's 
maximum transmission radius area is defined as a cluster zone; thus, direct communication 
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between cluster headers is likely impossible. There is a possibility that some member nodes in 
the area intersect the cluster zones, and they can communicate with more than one cluster 
header. These member nodes are called relay nodes, and the role of relay nodes serves to 
transmit data in the middle for communication between cluster headers [19]. 

When a sensing hole occurs because the number of sensor nodes required for data collection 
in a cluster zone is insufficient, the sensing hole's cluster header requests relocation of member 
nodes necessary for sensing hole recovery in the adjacent cluster zone. Fig. 1 describes a 
simple example of the most representative relocation protocol [13], and the message types are 
shown in Table 1. In the next section, the proposed scheme also uses some of the message 
types described below. (In advance, RELAY and RELAY-ACK messages are not used in the 
proposed protocol.) 
 

Table 1. Message type and description for the relocation protocol in Fig. 1 
Type Description/Format 

HELLO 
 The header checks the state of its zone with periodic broadcasting. 
 { type, source address, destination address (broadcasting) } 

HELLO-ACK 
 Member node sends relay node field (T/F) in response to receiving 

HELLO message. 
 { type, src address, dst address (header), relay node field (T/F) } 

RELAY 
 The header performs multicasting on the relay nodes to select the 

appropriate relay nodes. 
 { type, src address, dst addresses (relay nodes) } 

RELAY-ACK 
 Relay nodes receive RELAY and then answer. 
 { type, src address, dst address (header) } 

REQ 

 Header requests a relay node to move hopping sensors for sensing 
hole recovery 

 { type, src address, dst address (relay), # of req. members, sensing 
hole header address, header GPS information } 

MOVE 

 Header sends moving commands to the selected members by 
multicasting. 

 { type, src address, dst address (hopping members), sensing hole 
header address, sensing hole header GPS information } 

 
Each cluster header (HA, HB) periodically broadcasts a HELLO message in each cluster 

zone, and it can continuously check the states of the hopping sensor member nodes in its area. 
Member nodes should respond to their states to their headers and inform that they are relay 
nodes through HELLO-ACK messages if they have received HELLO messages more than one. 
If the initial network policy identifies lower than a certain number of member nodes, the cluster 
header can determine that its cluster zone has become a sensing hole. In Fig. 1, the cluster 
header HC determines that a sensing hole occurs, and a brief look at the relocation strategy 
performed to recover it is as follows: 
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Step 1. The cluster header HC multicasts RELAY messages to all its relay nodes (R2, R3) 
to request one member node required from any neighboring cluster zones (Clusters B and D). 

Step 2. Each relay node immediately sends a RELAY-ACK message in response to the 
RELAY message received, and here, the reply from R2 arrives at the HC the fastest. R3 
responses to be received later are ignored. (In other words, we can know that it is the shortest 
path-based relocation method by selecting the relay node that responded fastest.) 

Step 3. Cluster header HC transmits a REQ message to the chosen relay node R2 to request 
one sensor required. 

Step 4. The relay node R2 immediately delivers the REQ message received from the cluster 
header HC to another its cluster header HB. 

Step 5. The cluster Header HB chooses M3 as a movable hopping sensor member node and 
sends a MOVE message to move to cluster zone C. Upon receiving the message, and the 
member node M3 moves to the neighboring sensing hole cluster zone. 

Step 6. Simultaneously, the cluster header HB predicts that its zone will also be a sensing 
hole and sends a REQ message to the relay node R1 to request one sensor needed. (Of course, 
there is a relay node selection process for sending REQ messages here, but it has been omitted.) 

Step 7. The relay node R1 also delivers its REQ message to cluster header HA. 
Step 8. Cluster Header HA selects M2 from sensor node members inside its zone and orders 

the move to cluster zone B. 
 

As a result, one sensor is appropriately relocated inside each cluster zone, so that all sensing 
holes can be recovered. 
 

2.3 Improved Relocation Mechanism to Overcome Obstacle Environment  
In general, the environment in which the hopping sensor is considered is not a flat terrain. 
When considering the topographic information about obstacles around the cluster zone, it is 
necessary to consider defects that may occur during movement. In the paper [14], it was 
possible to increase the sensing hole recovery rate by indirectly predicting the distribution state 
of obstacles (stone, mud, sinkhole, etc.) around the sensing hole. 
 

  

(a) (b) 

Fig. 2. Scenarios to describe existing relocation methods in [13, 14] 

 
First, let us look at a typical member node relocation scenario that does not consider 

obstacles. In cluster zone B of Fig. 2(a), there are node failures because two members ran out 
of energy. After a while, the header HB determines that its zone is a sensing hole and requests 



3126                                                            Kim et al.: Adaptive Success Rate-based Sensor Relocation for IoT Applications 

two member nodes necessary for cluster zone A. Two member nodes (M1, M2) ordered move 
from zone A move to zone B. One member (M1) is caught in an obstacle and failed to move 
to zone B, but the other (M2) is succeeded in moving to zone B. Zone B's header determines 
a sensing hole again and requests additional member movement to zone A. In Fig. 2(b), 
member M3 of zone A fails to move to zone B because of an obstacle again during movement. 
In order to overcome the sensing hole, the header of zone B requests the movement of one 
member from zone A again so that the member M4 succeeds in the movement and recovers 
the sensing hole. We have looked at the relocation through three REQ messages to recover the 
first sensing hole. 
 

  

(a) (b) 

Fig. 2. Scenarios to describe existing relocation methods in [13, 14] 
 

Second, let us look at the relocation of node members when considering the existence of 
obstacles. In cluster zone B of Fig. 2(a), two members' energies are exhausted, resulting in 
node failure. After a while, the header HB determines a sensing hole and tries to request two 
member nodes from zone A. In the relocation protocol of [14], the number of members 
required is calculated by considering the movement success rate. The movement success rate 
p  and the number of requested members cnt  are calculated as follows: 

p =  (# of members successfully moved)  (# of members requested) (1) 

cnt =  Ceiling [ (# of members requested) ⋅ ( )( )1 1 p+ −  ] (2) 
 
After setting the initial value of p  to 1, the number of member requests is ( )( )2 1 1 1⋅ + −   , 

that is, two members are requested from zone A. In Fig. 2(a), two members are ordered to 
move from zone A, and as in the first scenario, one member (M1) fails to move due to an 
obstacle, but the other (M2) successfully moves to zone B. In Fig. 2(b), zone B's header 
calculates the value of p  as 1/2 according to Equation (1), and it determines that the sensing 
hole could still not be recovered. The number of members requested from zone A is 

( )( )1 1 1 1/ 2⋅ + −   , and two members are requested to move again. For the two members of 
zone A, one member (M3) fails to move to zone B as in the previous scenario. The other 
member (M4) can successfully move to zone B, so the sensing hole is recovered. We have 
looked that two REQ messages used are lower than those of the first scenario's three REQ 
messages to recover the sensing hole. 
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The first scenario is the relocation method first proposed in the paper [13], and it aims to 
recover the sensing hole quickly based on the shortest path. The second scenario is a relocation 
method that indirectly estimates the state of an obstacle considering the success rate of 
movement in the paper [14]. There is a profit in that the number of requesting member nodes 
could be increased according to the movement success rate so that the sensing hole can be 
recovered quickly. 

However, many things have been realistically overlooked in these relocation schemes. First, 
the assumption that obstacles are evenly distributed is somewhat unreasonable. For example, 
the distribution of obstacles in a disaster area is likely not uniform depending on the direction. 
Second, both relocation algorithms [13, 14] are the shortest path based schemes. A method of 
multicasting a RELAY message to relay nodes and selecting the relay node that sent the 
RELAY-ACK message first is used. However, considering the distribution of obstacles, there 
is no reason to stick to only the shortest path. In other words, it could be most advantageous 
for sensing hole recovery to request necessary member nodes to the cluster zone with the 
lowest distribution of obstacles. Therefore, in the next section, we propose how the cluster 
header of the sensing hole reflects uneven obstacles to select the appropriate relay node to 
transmit the REQ message and how to determine the best policy through reinforcement 
learning of the cluster header. 

3. Proposed Relocation Protocol 
In this section, we explore the problems of how to consider obstacle conditions in existing 
studies and propose real-world surrounding obstacle environment predictions through 
reinforcement learning. 

3.1 Reviewing Problems in Previous Studies 
The background picture of Fig. 3 depicted a natural disaster in Kenya in 2018 and is intended 
to be used as an example of a non-uniform distribution of obstacles. Researchers initially 
deploy sensors evenly as much as possible to analyze the characteristics of the terrain of 
interest. However, suppose that the continuing operation of the sensors in cluster zone B 
caused an energy defect, making cluster zone B a sensing hole.  
 

 

Fig. 3. An example of non-uniformly distributed obstacles: Kenya’s Big Crack [20] 
 

Since the two previously introduced relocation algorithms [13, 14] are shortest-path based 
relocation algorithms, Fig. 3's sensing hole cluster header HB will probably choose relay node 
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R2 to request member nodes needed for sensing hole recovery. However, no matter how much 
the relocation algorithm in [14] predicts the level of obstacles and requests additional hopping 
sensor member nodes beyond the required number, an obstacle status of Fig. 3 will most likely 
result in a continuous movement failure. After all, it is clear that continuous selection of relay 
node R2 on the shortest path basis will be fundamentally wrong, with additional costs such as 
multiple member-movement defects and message transmission. 

To overcome the selection of only specific relay nodes, which is the shortest path-based 
limit, a recent paper [17] proposes a method of selecting relay nodes to some extent equally 
using queues. The cluster headers queue the information of relay nodes in the order in which 
they received the RELAY-ACK messages and then sequentially pull them out of the queue to 
perform the selection of relay nodes so that they are not skewed. However, in obstacle 
environments such as Fig. 3, there is still a possibility that about half of the requests for 
movement (i.e., zone C of clusters zone A and C) will fail. 
 

3.2 The Proposed Relocation Algorithm 
Fig. 4 shows the mechanism of the cluster header unit that executes the proposed relocation 
algorithm. In Fig. 4(a), the header broadcasts the HELLO message from Table 1 to his zone. 
In Fig. 4(b), when the header receives HELLO-ACK messages, it identifies the relay nodes 
among each member node. In Fig. 4(c), the header identifies and counts the member nodes 
except the relay nodes. In Fig. 4(d), the header determines if his zone has become a sensing 
hole. If identified as a sensing hole, the header requests the neighboring zone for the member 
nodes he needs through the algorithm of Fig. 5. 
 

 

Fig. 4. Header unit of hopping sensor member node 
 

The algorithm for the REQ Unit of Fig 4 is presented in Fig 5. In Fig. 5, lines 01-05 
describe the input and output values. Line 02 is a set ( Relay ) of the relay nodes, and Line 03 
is a set ( tP ) of the time instance t  in which the sensing hole occurred and the success rates 
for each relay node that reflects the success rate of the requested moving nodes through the 
selected relay node. Line 04 is a set ( tR ) of relay node selection random variables used at the 

1t +  point in time. Line 05 defines REQ messages as output values sent during the time (T ) 
the cluster header is operational. 
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Lines 06-07 are initializations for success rate and random variables. The initial relay node 
selection probability variables ( 0R ) were all given equal probability distributions (Fig. 4(e)). 
Lines 08-18 describe a mechanism for transmitting REQ messages at the time of sensing hole 
occurrence t . Line 09 selects the relay node at t -time using 1t−R . The SELECTION() 
function can select the best relay node using random variables, such as the Monte Carlo 
method (Fig. 4(f)). The number of member nodes to be requested to the selected relay node r  
is calculated using the CNT() function (Fig. 4(g)). The CNT() function uses Equation (2) and 
success rate variables 1t−P  to calculate the cnt of Equation (2). In line 11, the cluster header 
sends REQ messages (Fig. 4(h)), waits the next HELLO broadcasting at line 12 (Fig. 4(i)), 
and calculates the success rate ( p of Equation (1)) at lines 13-14 (Fig. 4(j)). 
 

 01. Input: 
 02.  { }     ...   Relay R1, R2, , Rn←   

 03.  { }2     ,   t
R1 R Rn
t t tp , p , ... p←P  

 04.  { }2     ,   t
R1 R Rn
t t t, , ...← ℜ ℜ ℜR  

 05. Output: REQ message including # of members requested and  
the selected relay node 

 06. { }0    1  1  ,  1 , , ...←P  

 07. { }0
1 1 1     ,   n n n, , ...←R  

 08. FOR ( )  t T∈    DO 

 09.  ( )1  tr −← RSELECTION  

 10.  ( )1  r
tcnt p −← CNT  

 11.  ( ),  r cntSEND_REQ  

 12.  ( )Hello Message Interval TimeWAIT  

 13.    # of members successfully moveds ←  

 14.    sp
cnt

←  

 15.  1  t t−←P P  

 16.  

1

1
  

  

t
r
k

k t mr
t

p p
p

m

−

= − +

 + 
 ←
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 17.  
1

  t
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←

∑
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R  

 18. END FOR 

Fig. 5. The proposed algorithm for REQ unit of Fig. 4. 
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Lines 15-17 reinforce the set of success rates 1t−P  and the set of selection random variables 

1t−R  to tP  and tR . We calculate tP  using the most recent 1m −  set from a set of success 
rates  {  0P , 1P , K  2t−P , 1t−P }  and the success rate p  just calculated. The selection random 
variable tR  is then calculated by normalizing tP  on line 17 (Fig. 4(j)). 
 

3.3 A Case Study for Relocation Algorithm 
In the example of Fig. 6, assume that at least five sensor node members are required to recover 
the sensing hole. In the paper [14], considering the obstacle environment, the header HB of 
cluster zone B detects the sensing hole and delivers RELAY messages to the relay nodes, as 
shown in Fig. 6(a). Select relay node R1 closest to it and respond first, and request five 
members from neighboring cluster zone A. In Fig. 6(b), five members selected by the header 
HA are moving to the sensing hole. Of these, four members were faulted by obstacles, and only 
one member was able to move to restore the sensing hole. The header HB, which has yet to 
recover the sensing hole, needs four additional members to recover the sensing hole, but using 
Equation (2), ( )( )4 1 1 1/ 5× + −   , 8 members are requested. It is likely that R1 will still be 
selected as the shortest path base for the selection of relay nodes to be requested, and cluster 
zone A will request eight members. However, in the direction of zone A, there are many 
obstacles as previously experienced, and there are currently only three member-nodes, so even 
if they all succeed in moving, they cannot recover the sensing hole. 
 

(a) 

 

(b) 
Fig. 6. Example of relocation algorithms 
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However, in the proposed method, the header HB of the cluster zone B detects a sensing 
hole and manages a random variable for selecting relay nodes. In all the relocation algorithms 
presented so far, the relay node was selected as a method of transmitting RELAY and RELAY-
ACK messages, but this process was excluded. Moreover, the relay node selection random 
variable is managed by the REQ unit of the cluster header. Initially, for each of the relay nodes 
R1 and R2, the success rate variable and the selection random variable are initialized to 0P  = 
{1, 1} and 0R  = {1/2, 1/2}, respectively. As Fig. 6(a), assume that the header HB detects the 
sensing hole and selects R1 according to the random variable 0R . In the same way as the 
previous example, as Fig. 6(b), suppose that only one member moved to the sensing hole while 
five members selected by the header HA were moving to the sensing hole. 

The header HB checks that the success rate of relay node R1 changes from 1 to 1/5, 
calculates as (1+1/5)/2 = 3/5, and updates as 1P ={3/5, 1} (For simplicity of the example, the 
value m  in Fig. 5 is set to 2). Therefore, in order to normalize 1P , since 3/5 + 1 = 8/5, the 
selection random variable can be reinforced to 1R = {3/8, 5/8}. In Fig. 6(b), according to the 
selection random variable 1R , the proposed scheme selects the relay node R2 and requests 

four members using the current success rate 2
1
Rp =1. The probability of recovering the sensing 

hole could increase. The proposed algorithm does not insist on relay node R1 by considering 
the shortest path as a method of transmitting RELAY and RELAY-ACK messages, and 
reflects the failure of R1 using the Monte Carlo method. Thus, relay node R2 can be selected 
by the result of the best decision making. 

4. Performance Evaluation 
A performance evaluation of the proposed relocation protocol is performed in this section. For 
realistic performance evaluation, the authors made the world's first attempt to completely 
implement the simulation using OMNeT++ [16, 21].  As it is well known, implementing the 
simulation by OMNeT++ requires considering all layers of the network, and it must have been 
a very arduous task as it took years to perfectly implement the movement and communication 
of hundreds of hop sensor member nodes. Table 2 provides an overview of the OMNeT++ 
implementation environment. 
 

Table 2. Simulation environments 
Parameters Values 

Network area 250m×150m 
Number of cluster headers 15 

Minimum number of members for each cluster to properly gather data 10 
Maximum communication radius for each sensor node 20m 
Maximum communication radius when highly jumping 29m 

Maximum distance that a sensor node moves forward with one jump 2m 
HELLO message interval 15, 30min 

 
Three hundred hopping sensors are randomly distributed in an area of 250 150m m×  to 

collect data, as shown in Fig. 7. Among them, 15 cluster headers are marked in red, and the 
remaining is 285 sensor member nodes. When there are less than ten sensor nodes in a cluster 



3132                                                            Kim et al.: Adaptive Success Rate-based Sensor Relocation for IoT Applications 

zone, a sensing hole could occur. The transmission radius of each hopping sensor on the 
ground is supposed to be 20m. The maximum transmission radius is 29m when the sensor 
jumps to the full height. The hopping sensor could move about 2m forward with one jump and 
hop up to 130 times. As shown in Fig. 7(b), obstacles are uniform-based randomly generated 
with a value of 1% of the total area. The obstacle's size appears more extensive than the actual 
size; however, the obstacle is assumed to be a square with a width and length of 1m. Just for 
the visual effect, the obstacles are made to appear larger. A cluster header broadcasts a HELLO 
message every 15 minutes to detect that its zone is a sensing hole. For the relocation protocol's 
performance analysis, a sensing hole is created in the central cluster zone, as shown in Fig. 7 
and Fig. 10. To generate the sensing hole, we assume a scenario that the member nodes 
continuously collect data, so the nodes' energy is rapidly consumed. Every sensor member 
node in the central cluster generates an event of data collection under an exponential 
distribution with an average of 5 minutes. For convenience, the initial energy value for sensing 
is set to 100, and 1 (energy consumption) is reduced for each event. The pseudocode's value 
m in Fig. 5 for the relay node selection random variable of the proposed scheme is set to 2 for 
simplicity. The simulation time is set to three days. 
 

  

(a) (b) 

Fig. 7. Snapshot of the simulation topologies 

 
 

Fig. 8. Standard deviation for relay node selection 
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Fig. 8 shows the standard deviation values of the frequency of relay nodes selected to 
request necessary sensors by the central cluster header when the zone becomes a sensing hole. 
In the existing method [14], since the relay node that responds fastest is intensively selected 
(i.e., the shortest path-based mechanism), we can check that the standard deviation value is 
very high. In other words, there is a wide variation for relay node selection. However, it can 
be seen that the relay node selection of the proposed method is uniformly selected overall with 
a low standard deviation value. 
 

 

Fig. 9. Number of primary messages generated (with obstacle 1%) 
 

Fig. 9 shows the number of primary (RELAY, RELAY-ACK, and REQ) messages 
occurring in the central cluster. The previous scheme establishes the shortest path using these 
three types of messages. However, since only the REQ message transmission is generated 
using the REQ unit of Fig. 4 in the proposed scheme, the number of messages than the previous 
one could be reduced in an enormous amount. Therefore, we can predict that the amount of 
primary message generation across the whole network has to be significantly reduced. 
 

 

Fig. 10. Simulation snapshot for non-uniform obstacle distribution (0.33%) topology 
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To consider the non-uniform distribution of obstacles, we set to establish a topology 
environment as Fig. 10. Here, obstacles are non-uniformly generated with a value of 0.33% of 
the total area. The HELLO message interval time is 30 minutes. In particular, only the middle 
area is considered an environment with many obstacles. Yellow nodes are defective nodes, 
and hopping sensor nodes can be seen from solid lines that many movements have occurred 
in the north direction to recover the sensing hole. 
 

 

Fig. 11. Relocation success rate 
 

Fig. 11 explains the success rate for nodes relocation according to the REQ message 
transmitted whenever a sensing hole occurs. In the environment shown in Fig. 10, it could be 
that the success rate is meager since the previous scheme only requests relocation in a specific 
direction. However, we are sure that the proposed method through reinforcement learning 
rapidly increases the relocation success rate after 30 hours. 

5. Conclusion 
It is most desirable to relocate the mobile sensor when a sensing hole condition in which data 
collection is impossible due to improper placement of IoT sensor devices or energy depletion 
failure. In the most realistic distributed networking-based relocation protocol so far, the 
sensing hole's cluster header transmits a request message for sensor relocation to the adjacent 
cluster header via a specific relay node at the nearest distance for rapid recovery of physical 
faults. However, sticking to specific nodes at the closest distance from such a rough terrain 
where the disaster occurred is not an appropriate way to successfully recover sensing holes. If 
a disaster occurred in an area where the periphery of that nearby node is challenging to move 
around, it would harm the hopping sensor's relocation. Furthermore, frequent use of specific 
relay nodes can increase the likelihood of unequal energy use from distributed sensor nodes, 
resulting in another node fault. 
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In this paper, we select the best relay node as reinforcement learning by applying a simple 
Monte Carlo method based on the relay nodes selection random variables that reflect the 
characteristics of the obstacle distribution, rather than the shortest path-based selection policy 
when the cluster header of the sensing hole selects relay nodes. The proposed scheme selects 
relay nodes with a high success rate and relocates the hopping sensors to recover a sensing 
hole. In an environment with no obstacles or uniformly distributed, relay nodes could be 
selected evenly. In order to evaluate the proposed scheme’s performance and reflect the actual 
physical communication equipment, the well-known OMNeT++ simulator is used. The 
proposed method can also reduce the vast number of communication messages compared to 
the previous one. In this work, however, there is a limitation that relay nodes managed by the 
cluster header are fixed. In real-world disaster areas, a sensor node failure could occur 
frequently, so we would need to study how to exclude faulty relay nodes and add new 
nominated relay nodes. Also, we plan to research relocation protocols that can appropriately 
respond to frequently changing surrounding obstacle environments in the future. 
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