• Title/Summary/Keyword: real hypersurfaces of type B

Search Result 12, Processing Time 0.024 seconds

REAL HYPERSURFACES OF TYPE B IN COMPLEX TWO-PLANE GRASSMANNIANS RELATED TO THE REEB VECTOR

  • Lee, Hyun-Jin;Suh, Young-Jin
    • Bulletin of the Korean Mathematical Society
    • /
    • v.47 no.3
    • /
    • pp.551-561
    • /
    • 2010
  • In this paper we give a new characterization of real hypersurfaces of type B, that is, a tube over a totally geodesic $\mathbb{Q}P^n$ in complex two-plane Grassmannians $G_2(\mathbb{C}^{m+2})$, where m = 2n, with the Reeb vector $\xi$ belonging to the distribution $\mathfrak{D}$, where $\mathfrak{D}$ denotes a subdistribution in the tangent space $T_xM$ such that $T_xM$ = $\mathfrak{D}{\bigoplus}\mathfrak{D}^{\bot}$ for any point $x{\in}M$ and $\mathfrak{D}^{\bot}=Span{\xi_1,\;\xi_2,\;\xi_3}$.

On characterizations of real hypersurfaces of type B in a complex hyperbolic space

  • Ahn, Seong-Soo;Suh, Young-Jin
    • Journal of the Korean Mathematical Society
    • /
    • v.32 no.3
    • /
    • pp.471-482
    • /
    • 1995
  • A complex n-dimensional Kaehlerian manifold of constant holomorphic sectional curvature c is called a comples space form, which is denoted by $M_n(c)$. A complete and simply connected complex space form consists of a complex projective space $P_nC$, a complex Euclidean space $C^n$ or a complex hyperbolic space $H_nC$, according as c > 0, c = 0 or c < 0. The induced almost contact metric structure of a real hypersurface M of $M_n(c)$ is denoted by $(\phi, \zeta, \eta, g)$.

  • PDF

CHARACTERIZATIONS OF REAL HYPERSURFACES OF COMPLEX SPACE FORMS IN TERMS OF RICCI OPERATORS

  • Sohn, Woon-Ha
    • Bulletin of the Korean Mathematical Society
    • /
    • v.44 no.1
    • /
    • pp.195-202
    • /
    • 2007
  • We prove that a real hypersurface M in a complex space form Mn(c), $c{\neq}0$, whose Ricci operator and structure tensor commute each other on the holomorphic distribution and the Ricci operator is ${\eta}-parallel$, is a Hopf hypersurface. We also give a characterization of this hypersurface.

ON CHARACTERIZATIONS OF REAL HYPERSURFACES WITH ${\eta}-PARALLEL$ RICCI OPERATORS IN A COMPLEX SPACE FORM

  • Kim, In-Bae;Park, Hye-Jeong;Sohn, Woon-Ha
    • Bulletin of the Korean Mathematical Society
    • /
    • v.43 no.2
    • /
    • pp.235-244
    • /
    • 2006
  • We shall give a characterization of a real hypersurface M in a complex space form Mn(c), $c\;{\neq}\;0$, whose Ricci operator and structure tensor commute each other on the holomorphic distribution of M, and the Ricci operator is ${\eta}-parallel$.

REAL HYPERSURFACE OF A COMPLEX PROJECTIVE SPACE

  • Lee, O.;Shin, D.W.
    • Journal of the Korean Mathematical Society
    • /
    • v.36 no.4
    • /
    • pp.725-736
    • /
    • 1999
  • In the present paper we will give a characterization of homogeneous real hypersurfaces of type A1, A2 and B of a complex projective space.

  • PDF

A NEW CHARACTERIZATION OF TYPE (A) AND RULED REAL HYPERSURFACES IN NONFLAT COMPLEX SPACE FORMS

  • Wang, Yaning
    • Bulletin of the Korean Mathematical Society
    • /
    • v.59 no.4
    • /
    • pp.897-904
    • /
    • 2022
  • In this paper, we obtain an inequality involving the squared norm of the covariant differentiation of the shape operator for a real hypersurface in nonflat complex space forms. It is proved that the equality holds for non-Hopf case if and only if the hypersurface is ruled and the equality holds for Hopf case if and only if the hypersurface is of type (A).

HYPERSURFACES IN 𝕊4 THAT ARE OF Lk-2-TYPE

  • Lucas, Pascual;Ramirez-Ospina, Hector-Fabian
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.3
    • /
    • pp.885-902
    • /
    • 2016
  • In this paper we begin the study of $L_k$-2-type hypersurfaces of a hypersphere ${\mathbb{S}}^{n+1}{\subset}{\mathbb{R}}^{n+2}$ for $k{\geq}1$ Let ${\psi}:M^3{\rightarrow}{\mathbb{S}}^4$ be an orientable $H_k$-hypersurface, which is not an open portion of a hypersphere. Then $M^3$ is of $L_k$-2-type if and only if $M^3$ is a Clifford tori ${\mathbb{S}}^1(r_1){\times}{\mathbb{S}}^2(r_2)$, $r^2_1+r^2_2=1$, for appropriate radii, or a tube $T^r(V^2)$ of appropriate constant radius r around the Veronese embedding of the real projective plane ${\mathbb{R}}P^2({\sqrt{3}})$.