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A NOTE ON REAL HYPERSURFACES OF TYPE B

HYANG SOOK KIM

Introduction

A complex n-dimensional Kaehler manifold of constant holomorphic
sectional curvature c is called a complex space form, which is denoted
by Mn(c). Let J be its complex structure. The complete and simply
connected complex space form consists of a complex projective space
Cpn, a complex Euclidean space Cn or a complex hyperbolic space
CHn according as c > 0, c = 0 or c < O.

In study of real hypersurfaces of a complex projective space C pn,
Takagi [9] classified all homogeneous real hypersurfaces of cpn. He
showed also that real hypersurfaces of Cpn with 2 or 3 distinct constant
principal curvatures are homogeous.

On the other hand, Cecil and Ryan [2] studied pseudo-Einstein real
hypersurfaces of cpn on which e= -JC is principal, where C is the
unit normal vector field on M. They showed that if eis principal, then
M lies on a tube over a Kaehler submanifold. The structure vector eis
said to be principal if Ae = ae, where A is the shape operator in the
direction of C. By making use of this notion and the results of Takagi's
classification, Kimura [4) proved the following.

THEOREM A. Let M be a connected real hypersurface of cpn. Then
M has constant principal curvature and eis principal if and only if M
is locally congruent to one of the following:

(AI) a tube over a hype:rplane cpn-I.
(A z) a tube over a tolly geodesic Cpk(l :::; k :::; n - 2).

(B) a tube over a complex quadric Qn-I.
(C) a tube over CpI X cp(n-I)/Z and n(~ 5) is odd.
(D) a tube over a complex Grassmann Gz,s(C) and n = 9.
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(E) a tube over a Hermitian symmetric space SO(1O)jU(5) and
n = 15.

According to Takagi's classification [9], the principal curvatures and
their multiplicities of the above homogeneous real hypersurfaces are
gIven.

On the other hand, real hypersurfaces of a complex hyperbolic space
CH n have been investigated by Berndt [I], Montiel [6], Montiel and
Romero [7]. In particular, by using the notion of the tube in Cecil
and Ryan [2], Montiel [6] classified the real hypersurface of complex
hyperbolic space with at most two distinct principal curvatures.

Recently, Berndt [1] classified all real hypersurfaces with constant prin
cipal curvature of CHn under the condition such that eis principal.
Namely he proved the following.

THEOREM B. Let M be a connected real hypersurface ofCHn(n ~ 2).
Then M has constant principal curvatures and eis principal ifand only
if M is locally congruent to one of the following:

(Ao) a horosphere in CHn .
(AI) a tube over a complex hyperbolic hyperplane CHn-I.
(A2 ) a tube over a totally geodesic submanifold CHk (l ~ k ~ n - 2).

(B) a tube over a totally real hyperbolic space RHn.

In the present paper, one obtains the tensorian representation about
real hypersurfaces oftype B in Mn(c) (c =f 0) which characterizes them.

The purpose of this paper is to prove the following:

THEOREM. Let M be a real hypersurface of type B in Mn(c), c =f o.
Then V xA(Y) = a[21J(X)(A!p - !PA)Y + 1J(Y)(A!p - !pA)X +g«A!p
3~A)X,Y)~J ifand only ifM is locally congruent to a real hypersurface
of type B, where a E R.

1. Preliminaries

Let M be a real hypersurface of Mn(c) and let C be its unit normal
vector field on a neighborhood of a point x in M. For arbitrary vector
fields X and Y on M we define a tensor field 4> of type (1,1), a vector
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field ~ and a I-form 'f/ on M by g(</>X,Y) = G(JX,Y) and g(~,X) =
'f/(X) = g(JX,C), that is; M has an almost contact metric structure
induced from the almost complex structure J on Mn(c), where 9 denotes
the Riemannian metric of M induced from the Riemannian metric G of
Mn(c). Then we have

(1.1) </>2 X = -X + 'f/(X), </>~ = 0, 'f/(</>X) = 0, 'f/(~) = 1

for any tangent vector field X on M.
Futhermore, the covariant derivatives of the structure tensors are ob

tained:

(1.2) \7x</>(Y) = 'f/(Y)AX - g(AX,Y)~, \7x~ = </>AX,

where \7 is the induced Riemannian connection of g. Since the ambi
ent space Mn( c) is of constant holomorphic sectional curvature c, the
equation of Gauss and Codazzi are respectively given as follows:

(1.3)
c

R(X, Y)Z = 4; {g(Y, Z)X - g(X, Z)Y + g(</>Y, Z)</>X - g(</>X, Z)</>Y

- 2g(</>X,Y)</>Z} + g(AY,Z)AX - g(AX, Z)AY,

(1.4)
c

\7xA(Y) - \7yA(X) = 4; {TJ(X)</>Y - 'f/(Y)</>X - 2g(</>X, Y)O,

where R denotes the Riemannian curvature tensor of M. Using (1.3),
the Ricci tensor S of M is acquired:

(1.5)

where h = trace A and I being the identity transformation.
Recently, in order to give an another characterization of homogeneous

hypersurfaces of type AI, A 2 and B in cpn, Kimura and Maeda [5]
introduced the notion of a 'f/-parallel second fundamental form, which
was defined by g(\7X A(Y), Z) = 0 for any tangent vector fields X, Y
and Z orthogonal to ( Now, we prepare without proof the followings:
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THEOREM C ([5]). Let M be a real hypersurface of C pn. Then the
second fundamental form is Tf-paralle1 and eis principal if and only if
M is locally congruent to one of the homogeneous real hypersurfaces of
type AI, A2 or B.

THEOREM D ([8]). Let M be a real hypersurrace ofCHn . Then the
second fundamental form is Tf-parallel and ~ is principal if and only if
M is locally congruent to one of type A o, AI, A2 or B.

2. Tensorian representation of type B

Let M be a real hypersurface of type B in a complex space form
Mn(c), c =j:. 0 (n ~ 3). Then the structure vector ~ is principal, that is,

(2.1)

and

(2.2) A<jY + </JA = k<jY, where k = -cia.

(2.3)

In this case, it is seen that a is given by VC cot 2(), 0 < () < 7r12 when
c > 0 and v=c tanh 26, 0 < 6 < 00 when c < O. So the covariant
derivative of (2.1) gives

\7X A(~) = a</>AX - A</>AX,

where we have used the second equation of (1.2). Thus it follows from
(1.4) that

c
2A<jYAX = a(<jYA + A<jY)X + 2</>X,

which coupled with (2.2) leads to

c
A~~ = -4<jY.

Moreover, using (2.2) and (2.3), we obtain
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which together with (1.1) and (2.1) implies

5

(2.4) 2 C
A - kA - :4 = (3~ 0 TJ,

where (3 = a2 - ka - ~ E R.
Taking the covariant derivative of (2.4) along M and using the second

formula of (1.2), we get
(2.5)
'VxA(AY) + A'VxA(Y) - k'VxA(Y) - (3{TJ(Y)<pAX +g(<pAX, Y)O = 0

for any tangent vector fields X and Y.
Replacing X by AX into the last equation and making use of (2.4), it

is clear that

(2.6) {'VAxA(AY) + A'VAXA(Y) - k'VAXA(Y)}

- (3[TJ(Y)(k<pA + .:<p)(X) + {kg(<pAX, Y) + ':g(<pX, Y)}(] = 0
4 4

for any tangent vector fields X and Y. Since g('VAxA(AY),Z) =
g('VAX A(Z), AY), we make use of (1.4), (2.1), (2.3), (2.4) and (2.5),
we then have

(2.7)
g('VAX A(AY), Z)

c c
= - 4g('VzA(X), Y) - 4(3{1J(Y)g(<pZ,X) +71(X)g( <pZ,V)}

c c+ 4{a71(X)g( <pZ, AY) + 2a1J(Y)g(AX, <pZ ) + 471(Z)g( <pX ,V)},

which connected with (2.6) and (1.4) gives rise to

g('VAxA(AY) + A'VAXA(Y) - k'VAxA(Y),Z)
c

= - 4{g('VzA(X), Y) + g('VyA(X), Z)} - kg('VyA(Z), AX)

c c
+ 71(X)[4 a {g(AY, <pZ ) + g(AZ, <pY )} - 4kag(<pY, Z)]

c c c c
+ 71(Y)[-4(3g(X,<PZ ) + 2ag(AX,<PZ )+(4)2g(<pX,Z)+ 4kg(<pAX,Z)]

c 2 C C C
+ 71(Z)[( 4) g(<pX'Y)-4(3g(X,<PY)+2ag(AX,<pY)+2kg(<pAX,Y)].
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And, from (2.6), the last equation yields

c
4{g(VzA(Y),X) + g(VyA(Z),X)} + kg(VyA(Z),AX)

c C 2
= 1J(X)[4a{g(AY, </>Z) + g(AZ, </>Y)} + 4 g(</>Y, Z)]

c c c
+1J(Y)[(4?g(</>X, Z) + g(AX, </>Z)((3k + 2a - 4k)]

c c c
+ 1J(Z)[(4)2g(</>X, Y) +g(AX, </>Y)((3k +2a - 2k)],

which linked with the definition of fJ leads to

(2.8)
c
4{g(VzA(Y),X) + g(\7yA(Z),X)} + kg(\7yA(Z),AX)
c

= 41J(X)[a{g(AY, </>Z) + g(AZ, </>Y)} +cg(</>Y, Z)]
c c+ 41J(Y) [4 g(</>X, Z) + 2(k - a)g(AX, </>Z)]
c c+ 4ry(Z)[4g(</>X, Y) + (k - 2a)g(AX,</>Y)].

On the other hand, from (2.5), we win

(2.9) g(VxA(Y),AZ) + g(VxA(Z), AY)
= kg(VX A(Y), Z) - (3{ry(Y)g(AX, </>Z) + ry( Z)g(AX, </>Y)}

and taking the symmetric part of (2.8) with respect to X and Z, we get

{g(VxA(Y), Z) + 2g(VyA(Z),X) + g(\7zA(X), Y)}
4k+ -{g(VyA(Z),AX) +g(VyA(X),AZ)}
c

3
= ry(XHag(AY, </>Z) + (k - a)g(AZ, </>Y) + 4cg(</>Y, Z)}

+ 2(k - a)ry(Y){g(AX, </>Z) +g(</>X,AZ)}

+1J(Z){ag(</>X, AY) + (k - a)g(AX, </>Y) + ~Cg(X, </>Y)},
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which combined with (2.9) and (1.4) gives forth

~(k2 + c)g(Vy A(Z),X) = (k - 0:)[1](X){3g(AY, </>Z) +g(AZ, </>Y)}
c

+ 21](Y){g(AX, </>Z) + g(</>X, AZ)}

+ 1](Z){g(AX, </>Y) + 3g(</>X, AY)}].

From the definition of k, we have k - 0: = _!;(0:2 + c) and k2 + c =
0%- (0:

2 + c), and hence 0:
2 + c i= 0 because M is of type B. Thus we

attain

(2.10)
a

VX A(Y) = - 4" [21](X) (A</> - </>A)Y +1](Y)(A</> - 3</>A)X

+ g((A</> - 3</>A)X, y)e]

for any tangent vector fields X and Y.

REMARK 2.1. Let M be a real hypersurface of type B in Mn( c), c i=
o (n ?: 3). Then equation (2.10) is equivalent to

c
(2.11) VxA(Y) = -4 {1](Y)</>X + g(</>X, Y)O

0:
1'-2{17{X)(q'>A - AcP)Y + l1(Y-)t</>A - Al/JyX + g(~l/Jk=:A.1»X, Y)e}.

Indeed, making use of (2.2), we get A</> - 3</>A = 2(A</> - </>A) - k</>,
which connected with (2.10) implies

o:k
V X A(Y) =4[1](Y)</>X + g(</>X, Y)~]

a+ "2 [1](X)( </>A - A</»Y +1](Y)(</>A - A</»X

+ g((</>A - A</»X, Y)~].

Therefore, from the definition of k, the assertion is true.

REMARK 2.2. It was proved that ifreal hypersurfaces ofMn(c) satisfy
(2.10), then ~ is principal [3}.

From the above remark, we get a tensorian representation of real hy
persurfaces of type B in Mn(c). Namely we have
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THEOREM 2.1. Let M be a real hypersUIface of Mn(c), c f. o. Then
V xA(Y) =a[21l(X)(A</>-</>A)Y+ll(Y)(A</>-<pA)X+g«A</>-3</>A)X, y)e)
if and only if M is locally congruent to a real hypersUIface of type B,
where a ER.

Proof. It is enough to show the "only if' part is true.
Let M satisfies (2.10), then ~ is principal and M is Tfparallel. So, by
using the Theorem C and D, the proof is completed since the equation
(2.12) is not realized for real hypersurfaces of type A (type A means Al

or A2 when c > 0 and Ao, A l or A2 when c < 0).

REMARK 2.3. The tensorian representation in above theorem is mean
ingful because we obtain the results which coincide with Taka.gi's and
Berndt's table by the different proof from theirs. fu fact, let M be a real
hypersurface of type B in Mn(c), then M satisfies the equation (2.11).
Putting Y = ~ in (2.11) and using (1.1), we get

c a
(2.12) VxA(~) = -"4q>X+ "2{1](X)q>Ae+(q>A-Aq»X +g(X, q>AOO,

which joined with the second formula of (1.2) implies

(2.13)

For any point x on M we can choose an orthonormal basis {El,... ,Ezn-l}
for the tangent space TxM such that VE;Ej = 0 (i,j, ... ,2n -1). Then
differentiating (2.11) covariantly along M and making use of (1.2), we
have

(2.14)

VwVxA(Y) = -~{g(</>AW, Y)</>X + g(<pX, Y)</>AW

+ ll(X)ll(Y)AW +1](X)g(AW, y)e - 21l(Y)g(AW, X)O

+ ~ [g( </>AW, X)( </>A - A</»Y + g(</>A loV, Y)( </>A - A</»X

+ g« </>A - A</»X, Y)</>AW + 1](X){1](AY)AW + g(AW, Y)Ae

- 2g(A2 W, Y)~ + </>VwA(Y) - VwA(<pY)} + ll(Y){ll(AX)AW

+ g(AW,X)A~ - 21l(X)A2W + </>VwA(X) - VwA(</>X)}

+ {ll(AX)g(AW, Y) + ll(AY)g(AW,X) - 21l(Y)g(A2W,X)

- g(VwA(X), </>Y) - g(VwA(</>X), Y)}~],
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which combined with the Hied fonnula for the shape operator A gives
forth

(2.15)
R(W,X)AY - A(R(W,X)Y)

c
= - 4{g(4)AW, Y)4>X - g(4)AX, Y)4>W + g(4)X, Y)4>AW

- g(4>W, Y)4>AX + 7J(X)7J(Y)AW - 7J(W)7J(Y)AX

+ 7J(X)g(AW, Y)~
a

-7J(W)g(AX, Y)O + 2" [g((4>A + A4>)W,X)(4)A - A4»Y

+ g(4>AW, Y)( 4>A - A4»X - g(4>AX, Y)( 4>A - A4»W

+ g((4>A - A4»X, Y)4>AW - g((4>A - A4»W, Y)4>AX

+ 7J(X){7J(AY)AW +g(AW; Y)A~ - 2g(A2 W, Y)~ + 4>V'wA(Y)

- V'wA(4>Y)}

- 7J(W){7J(AY)AX + g(AX, Y)A~ - 2g(A2 X, Y)~

+ 4>V'xA(Y) - V'xA(q,Y)}

+ 7J(Y){7J(AX)AW - 7J(AW)AX - 27J(X)A2W

+ 27J(W)A2 X + 4>V'wA(X)

- 4>V'X A(W) - V'wA( 4>X) + V'X A(4>liV)} + {7J(AX)g(AW; Y)

- 7J(AW)g(AX, Y)

- g(V' w A(X), 4>Y) +g(V'X A(W), 4>Y) - g(V'w A(4>X), Y)

+ g(V'X A(4>W), Y)}(].

H we put W = Ei in (2.15), taking the inner product of this result and
Ei and summing up with respect to i (i = 1, ... ,2n -1), we find

(2.16)
2 C 2 c

hA X + {- (n + 1) - h2 + a }AX + - (a - h)X
2 4

1 c a 2= - c<pAepX + -Cc - ah)7J(X)A~ +(- - -h + a )1J(AX)~
2 2 2

c a (2n - 1) 2
-[4 h +2"{ 2 c+2a -2h2 }]7J(X)e
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+ ~{AepAepX - epAepAX - 2epA2 epX +27J(AX)A~

- 7J(X)A2~ + 7J(A2X)O,

where we put h2 = trace A 2 and used (1.1), (1.4), (1.5) and (2.11). Now,
if we use (2.13), then </>A</>A = A</>A</>, which connected with (2.16) gives

C C
hA2 + {2(n + 1) - h2 + o?}A + 4(a - h)I

h (2n -1) 2
- {c(a - -) + c+ 2a2 + 2ah - 2h2}~ 0~ = -a</>A </> - c</>A</>,

4 2

where we have used (2.1).
Since M is of type B, the shape operator A of M has three distinct
principal curvatures (say a, A, 1') such that AX = AX and A</>X = p.</>X
for any tangent vector field X orthogonal to~. The last equation yields

and similarly we get

2 C 2 C 2
hp. +{2(n+1)-h2 +a }P.+4(o·-h)=-aA -d.

Combining the last two equations, we find (h - a)( A +p.) + Hn - 1) +
a 2 - h2 = 0, where we have used the fact A - p. =I O. Since we have
h - a = (n -l)(A + p.) and h2 = a 2 + (n -1)(A2 + p.2) because A and J.L
have multiplicity n - 1 respectively, it follows that

(2.17)
c

AP. = --.
4.

On the other hand, it is, using (2.1), seen that (A - ~)p. = Ot2A + "i,
which joined with (2.17) yields aA2+CA - ~a = 0 and hence we see that

vfC 1r vfC 1r
a = VC cot 29, ). = -cot(9 - -) or - -tan(6 --)

2 4 2 4

when c > 0 and

Fe Fea = v=c tan h 28, A = -2- cot he or -2- tan h8
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when c < O.
This results coincide with Takagi's table Berndt's one according to c > 0
and c < 0, respectively.
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