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A NOTE ON REAL HYPERSURFACES OF TYPE B

HYANG SOOK KIM

Introduction

A complex n-dimensional Kaehler manifold of constant holomorphic
sectional curvature c is called a complex space form, which is denoted
by Mn(c). Let J be its complex structure. The complete and simply
connected complex space form consists of a complex projective space
Cpn, a complex Euclidean space Cn or a complex hyperbolic space
CHn according as c > 0, c = 0 or c < O.

In study of real hypersurfaces of a complex projective space C pn,
Takagi [9] classified all homogeneous real hypersurfaces of cpn. He
showed also that real hypersurfaces of Cpn with 2 or 3 distinct constant
principal curvatures are homogeous.

On the other hand, Cecil and Ryan [2] studied pseudo-Einstein real
hypersurfaces of cpn on which e= -JC is principal, where C is the
unit normal vector field on M. They showed that if eis principal, then
M lies on a tube over a Kaehler submanifold. The structure vector eis
said to be principal if Ae = ae, where A is the shape operator in the
direction of C. By making use of this notion and the results of Takagi's
classification, Kimura [4) proved the following.

THEOREM A. Let M be a connected real hypersurface of cpn. Then
M has constant principal curvature and eis principal if and only if M
is locally congruent to one of the following:

(AI) a tube over a hype:rplane cpn-I.
(A z) a tube over a tolly geodesic Cpk(l :::; k :::; n - 2).

(B) a tube over a complex quadric Qn-I.
(C) a tube over CpI X cp(n-I)/Z and n(~ 5) is odd.
(D) a tube over a complex Grassmann Gz,s(C) and n = 9.
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(E) a tube over a Hermitian symmetric space SO(1O)jU(5) and
n = 15.

According to Takagi's classification [9], the principal curvatures and
their multiplicities of the above homogeneous real hypersurfaces are
gIven.

On the other hand, real hypersurfaces of a complex hyperbolic space
CH n have been investigated by Berndt [I], Montiel [6], Montiel and
Romero [7]. In particular, by using the notion of the tube in Cecil
and Ryan [2], Montiel [6] classified the real hypersurface of complex
hyperbolic space with at most two distinct principal curvatures.

Recently, Berndt [1] classified all real hypersurfaces with constant prin­
cipal curvature of CHn under the condition such that eis principal.
Namely he proved the following.

THEOREM B. Let M be a connected real hypersurface ofCHn(n ~ 2).
Then M has constant principal curvatures and eis principal ifand only
if M is locally congruent to one of the following:

(Ao) a horosphere in CHn .
(AI) a tube over a complex hyperbolic hyperplane CHn-I.
(A2 ) a tube over a totally geodesic submanifold CHk (l ~ k ~ n - 2).

(B) a tube over a totally real hyperbolic space RHn.

In the present paper, one obtains the tensorian representation about
real hypersurfaces oftype B in Mn(c) (c =f 0) which characterizes them.

The purpose of this paper is to prove the following:

THEOREM. Let M be a real hypersurface of type B in Mn(c), c =f o.
Then V xA(Y) = a[21J(X)(A!p - !PA)Y + 1J(Y)(A!p - !pA)X +g«A!p­
3~A)X,Y)~J ifand only ifM is locally congruent to a real hypersurface
of type B, where a E R.

1. Preliminaries

Let M be a real hypersurface of Mn(c) and let C be its unit normal
vector field on a neighborhood of a point x in M. For arbitrary vector
fields X and Y on M we define a tensor field 4> of type (1,1), a vector
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field ~ and a I-form 'f/ on M by g(</>X,Y) = G(JX,Y) and g(~,X) =
'f/(X) = g(JX,C), that is; M has an almost contact metric structure
induced from the almost complex structure J on Mn(c), where 9 denotes
the Riemannian metric of M induced from the Riemannian metric G of
Mn(c). Then we have

(1.1) </>2 X = -X + 'f/(X), </>~ = 0, 'f/(</>X) = 0, 'f/(~) = 1

for any tangent vector field X on M.
Futhermore, the covariant derivatives of the structure tensors are ob­

tained:

(1.2) \7x</>(Y) = 'f/(Y)AX - g(AX,Y)~, \7x~ = </>AX,

where \7 is the induced Riemannian connection of g. Since the ambi­
ent space Mn( c) is of constant holomorphic sectional curvature c, the
equation of Gauss and Codazzi are respectively given as follows:

(1.3)
c

R(X, Y)Z = 4; {g(Y, Z)X - g(X, Z)Y + g(</>Y, Z)</>X - g(</>X, Z)</>Y

- 2g(</>X,Y)</>Z} + g(AY,Z)AX - g(AX, Z)AY,

(1.4)
c

\7xA(Y) - \7yA(X) = 4; {TJ(X)</>Y - 'f/(Y)</>X - 2g(</>X, Y)O,

where R denotes the Riemannian curvature tensor of M. Using (1.3),
the Ricci tensor S of M is acquired:

(1.5)

where h = trace A and I being the identity transformation.
Recently, in order to give an another characterization of homogeneous

hypersurfaces of type AI, A 2 and B in cpn, Kimura and Maeda [5]
introduced the notion of a 'f/-parallel second fundamental form, which
was defined by g(\7X A(Y), Z) = 0 for any tangent vector fields X, Y
and Z orthogonal to ( Now, we prepare without proof the followings:
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THEOREM C ([5]). Let M be a real hypersurface of C pn. Then the
second fundamental form is Tf-paralle1 and eis principal if and only if
M is locally congruent to one of the homogeneous real hypersurfaces of
type AI, A2 or B.

THEOREM D ([8]). Let M be a real hypersurrace ofCHn . Then the
second fundamental form is Tf-parallel and ~ is principal if and only if
M is locally congruent to one of type A o, AI, A2 or B.

2. Tensorian representation of type B

Let M be a real hypersurface of type B in a complex space form
Mn(c), c =j:. 0 (n ~ 3). Then the structure vector ~ is principal, that is,

(2.1)

and

(2.2) A<jY + </JA = k<jY, where k = -cia.

(2.3)

In this case, it is seen that a is given by VC cot 2(), 0 < () < 7r12 when
c > 0 and v=c tanh 26, 0 < 6 < 00 when c < O. So the covariant
derivative of (2.1) gives

\7X A(~) = a</>AX - A</>AX,

where we have used the second equation of (1.2). Thus it follows from
(1.4) that

c
2A<jYAX = a(<jYA + A<jY)X + 2</>X,

which coupled with (2.2) leads to

c
A~~ = -4<jY.

Moreover, using (2.2) and (2.3), we obtain
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which together with (1.1) and (2.1) implies

5

(2.4) 2 C
A - kA - :4 = (3~ 0 TJ,

where (3 = a2 - ka - ~ E R.
Taking the covariant derivative of (2.4) along M and using the second

formula of (1.2), we get
(2.5)
'VxA(AY) + A'VxA(Y) - k'VxA(Y) - (3{TJ(Y)<pAX +g(<pAX, Y)O = 0

for any tangent vector fields X and Y.
Replacing X by AX into the last equation and making use of (2.4), it

is clear that

(2.6) {'VAxA(AY) + A'VAXA(Y) - k'VAXA(Y)}

- (3[TJ(Y)(k<pA + .:<p)(X) + {kg(<pAX, Y) + ':g(<pX, Y)}(] = 0
4 4

for any tangent vector fields X and Y. Since g('VAxA(AY),Z) =
g('VAX A(Z), AY), we make use of (1.4), (2.1), (2.3), (2.4) and (2.5),
we then have

(2.7)
g('VAX A(AY), Z)

c c
= - 4g('VzA(X), Y) - 4(3{1J(Y)g(<pZ,X) +71(X)g( <pZ,V)}

c c+ 4{a71(X)g( <pZ, AY) + 2a1J(Y)g(AX, <pZ ) + 471(Z)g( <pX ,V)},

which connected with (2.6) and (1.4) gives rise to

g('VAxA(AY) + A'VAXA(Y) - k'VAxA(Y),Z)
c

= - 4{g('VzA(X), Y) + g('VyA(X), Z)} - kg('VyA(Z), AX)

c c
+ 71(X)[4 a {g(AY, <pZ ) + g(AZ, <pY )} - 4kag(<pY, Z)]

c c c c
+ 71(Y)[-4(3g(X,<PZ ) + 2ag(AX,<PZ )+(4)2g(<pX,Z)+ 4kg(<pAX,Z)]

c 2 C C C
+ 71(Z)[( 4) g(<pX'Y)-4(3g(X,<PY)+2ag(AX,<pY)+2kg(<pAX,Y)].
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And, from (2.6), the last equation yields

c
4{g(VzA(Y),X) + g(VyA(Z),X)} + kg(VyA(Z),AX)

c C 2
= 1J(X)[4a{g(AY, </>Z) + g(AZ, </>Y)} + 4 g(</>Y, Z)]

c c c
+1J(Y)[(4?g(</>X, Z) + g(AX, </>Z)((3k + 2a - 4k)]

c c c
+ 1J(Z)[(4)2g(</>X, Y) +g(AX, </>Y)((3k +2a - 2k)],

which linked with the definition of fJ leads to

(2.8)
c
4{g(VzA(Y),X) + g(\7yA(Z),X)} + kg(\7yA(Z),AX)
c

= 41J(X)[a{g(AY, </>Z) + g(AZ, </>Y)} +cg(</>Y, Z)]
c c+ 41J(Y) [4 g(</>X, Z) + 2(k - a)g(AX, </>Z)]
c c+ 4ry(Z)[4g(</>X, Y) + (k - 2a)g(AX,</>Y)].

On the other hand, from (2.5), we win

(2.9) g(VxA(Y),AZ) + g(VxA(Z), AY)
= kg(VX A(Y), Z) - (3{ry(Y)g(AX, </>Z) + ry( Z)g(AX, </>Y)}

and taking the symmetric part of (2.8) with respect to X and Z, we get

{g(VxA(Y), Z) + 2g(VyA(Z),X) + g(\7zA(X), Y)}
4k+ -{g(VyA(Z),AX) +g(VyA(X),AZ)}
c

3
= ry(XHag(AY, </>Z) + (k - a)g(AZ, </>Y) + 4cg(</>Y, Z)}

+ 2(k - a)ry(Y){g(AX, </>Z) +g(</>X,AZ)}

+1J(Z){ag(</>X, AY) + (k - a)g(AX, </>Y) + ~Cg(X, </>Y)},
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which combined with (2.9) and (1.4) gives forth

~(k2 + c)g(Vy A(Z),X) = (k - 0:)[1](X){3g(AY, </>Z) +g(AZ, </>Y)}
c

+ 21](Y){g(AX, </>Z) + g(</>X, AZ)}

+ 1](Z){g(AX, </>Y) + 3g(</>X, AY)}].

From the definition of k, we have k - 0: = _!;(0:2 + c) and k2 + c =
0%- (0:

2 + c), and hence 0:
2 + c i= 0 because M is of type B. Thus we

attain

(2.10)
a

VX A(Y) = - 4" [21](X) (A</> - </>A)Y +1](Y)(A</> - 3</>A)X

+ g((A</> - 3</>A)X, y)e]

for any tangent vector fields X and Y.

REMARK 2.1. Let M be a real hypersurface of type B in Mn( c), c i=
o (n ?: 3). Then equation (2.10) is equivalent to

c
(2.11) VxA(Y) = -4 {1](Y)</>X + g(</>X, Y)O

0:
1'-2{17{X)(q'>A - AcP)Y + l1(Y-)t</>A - Al/JyX + g(~l/Jk=:A.1»X, Y)e}.

Indeed, making use of (2.2), we get A</> - 3</>A = 2(A</> - </>A) - k</>,
which connected with (2.10) implies

o:k
V X A(Y) =4[1](Y)</>X + g(</>X, Y)~]

a+ "2 [1](X)( </>A - A</»Y +1](Y)(</>A - A</»X

+ g((</>A - A</»X, Y)~].

Therefore, from the definition of k, the assertion is true.

REMARK 2.2. It was proved that ifreal hypersurfaces ofMn(c) satisfy
(2.10), then ~ is principal [3}.

From the above remark, we get a tensorian representation of real hy­
persurfaces of type B in Mn(c). Namely we have
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THEOREM 2.1. Let M be a real hypersUIface of Mn(c), c f. o. Then
V xA(Y) =a[21l(X)(A</>-</>A)Y+ll(Y)(A</>-<pA)X+g«A</>-3</>A)X, y)e)
if and only if M is locally congruent to a real hypersUIface of type B,
where a ER.

Proof. It is enough to show the "only if' part is true.
Let M satisfies (2.10), then ~ is principal and M is Tfparallel. So, by
using the Theorem C and D, the proof is completed since the equation
(2.12) is not realized for real hypersurfaces of type A (type A means Al

or A2 when c > 0 and Ao, A l or A2 when c < 0).

REMARK 2.3. The tensorian representation in above theorem is mean­
ingful because we obtain the results which coincide with Taka.gi's and
Berndt's table by the different proof from theirs. fu fact, let M be a real
hypersurface of type B in Mn(c), then M satisfies the equation (2.11).
Putting Y = ~ in (2.11) and using (1.1), we get

c a
(2.12) VxA(~) = -"4q>X+ "2{1](X)q>Ae+(q>A-Aq»X +g(X, q>AOO,

which joined with the second formula of (1.2) implies

(2.13)

For any point x on M we can choose an orthonormal basis {El,... ,Ezn-l}
for the tangent space TxM such that VE;Ej = 0 (i,j, ... ,2n -1). Then
differentiating (2.11) covariantly along M and making use of (1.2), we
have

(2.14)

VwVxA(Y) = -~{g(</>AW, Y)</>X + g(<pX, Y)</>AW

+ ll(X)ll(Y)AW +1](X)g(AW, y)e - 21l(Y)g(AW, X)O

+ ~ [g( </>AW, X)( </>A - A</»Y + g(</>A loV, Y)( </>A - A</»X

+ g« </>A - A</»X, Y)</>AW + 1](X){1](AY)AW + g(AW, Y)Ae

- 2g(A2 W, Y)~ + </>VwA(Y) - VwA(<pY)} + ll(Y){ll(AX)AW

+ g(AW,X)A~ - 21l(X)A2W + </>VwA(X) - VwA(</>X)}

+ {ll(AX)g(AW, Y) + ll(AY)g(AW,X) - 21l(Y)g(A2W,X)

- g(VwA(X), </>Y) - g(VwA(</>X), Y)}~],
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which combined with the Hied fonnula for the shape operator A gives
forth

(2.15)
R(W,X)AY - A(R(W,X)Y)

c
= - 4{g(4)AW, Y)4>X - g(4)AX, Y)4>W + g(4)X, Y)4>AW

- g(4>W, Y)4>AX + 7J(X)7J(Y)AW - 7J(W)7J(Y)AX

+ 7J(X)g(AW, Y)~
a

-7J(W)g(AX, Y)O + 2" [g((4>A + A4>)W,X)(4)A - A4»Y

+ g(4>AW, Y)( 4>A - A4»X - g(4>AX, Y)( 4>A - A4»W

+ g((4>A - A4»X, Y)4>AW - g((4>A - A4»W, Y)4>AX

+ 7J(X){7J(AY)AW +g(AW; Y)A~ - 2g(A2 W, Y)~ + 4>V'wA(Y)

- V'wA(4>Y)}

- 7J(W){7J(AY)AX + g(AX, Y)A~ - 2g(A2 X, Y)~

+ 4>V'xA(Y) - V'xA(q,Y)}

+ 7J(Y){7J(AX)AW - 7J(AW)AX - 27J(X)A2W

+ 27J(W)A2 X + 4>V'wA(X)

- 4>V'X A(W) - V'wA( 4>X) + V'X A(4>liV)} + {7J(AX)g(AW; Y)

- 7J(AW)g(AX, Y)

- g(V' w A(X), 4>Y) +g(V'X A(W), 4>Y) - g(V'w A(4>X), Y)

+ g(V'X A(4>W), Y)}(].

H we put W = Ei in (2.15), taking the inner product of this result and
Ei and summing up with respect to i (i = 1, ... ,2n -1), we find

(2.16)
2 C 2 c

hA X + {- (n + 1) - h2 + a }AX + - (a - h)X
2 4

1 c a 2= - c<pAepX + -Cc - ah)7J(X)A~ +(- - -h + a )1J(AX)~
2 2 2

c a (2n - 1) 2
-[4 h +2"{ 2 c+2a -2h2 }]7J(X)e
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+ ~{AepAepX - epAepAX - 2epA2 epX +27J(AX)A~

- 7J(X)A2~ + 7J(A2X)O,

where we put h2 = trace A 2 and used (1.1), (1.4), (1.5) and (2.11). Now,
if we use (2.13), then </>A</>A = A</>A</>, which connected with (2.16) gives

C C
hA2 + {2(n + 1) - h2 + o?}A + 4(a - h)I

h (2n -1) 2
- {c(a - -) + c+ 2a2 + 2ah - 2h2}~ 0~ = -a</>A </> - c</>A</>,

4 2

where we have used (2.1).
Since M is of type B, the shape operator A of M has three distinct
principal curvatures (say a, A, 1') such that AX = AX and A</>X = p.</>X
for any tangent vector field X orthogonal to~. The last equation yields

and similarly we get

2 C 2 C 2
hp. +{2(n+1)-h2 +a }P.+4(o·-h)=-aA -d.

Combining the last two equations, we find (h - a)( A +p.) + Hn - 1) +
a 2 - h2 = 0, where we have used the fact A - p. =I O. Since we have
h - a = (n -l)(A + p.) and h2 = a 2 + (n -1)(A2 + p.2) because A and J.L
have multiplicity n - 1 respectively, it follows that

(2.17)
c

AP. = --.
4.

On the other hand, it is, using (2.1), seen that (A - ~)p. = Ot2A + "i,
which joined with (2.17) yields aA2+CA - ~a = 0 and hence we see that

vfC 1r vfC 1r
a = VC cot 29, ). = -cot(9 - -) or - -tan(6 --)

2 4 2 4

when c > 0 and

Fe Fea = v=c tan h 28, A = -2- cot he or -2- tan h8
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when c < O.
This results coincide with Takagi's table Berndt's one according to c > 0
and c < 0, respectively.
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