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A NOTE ON REAL HYPERSURFACES OF TYPE B

HyanGg Sook KiMm

Introduction

A complex n-dimensional Kaehler manifold of constant holomorphic
sectional curvature c is called a complex space form, which is denoted
by M™(c). Let J be its complex structure. The complete and simply
connected complex space form consists of a complex projective space
CP™, a complex Euclidean space C™ or a complex hyperbolic space
CH™ according as ¢ > 0, c=0o0r c<0.

In study of real hypersurfaces of a complex projective space CP",
Takagi [9] classified all homogeneous real hypersurfaces of CP™. He
showed also that real hypersurfaces of CP™ with 2 or 3 distinct constant
principal curvatures are homogeous.

On the other hand, Cecil and Ryan [2] studied pseudo-Einstein real
hypersurfaces of CP"™ on which ¢ = —JC is principal, where C is the
unit normal vector field on M. They showed that if { is principal, then
M lies on a tube over a Kaehler submanifold. The structure vector € is
said to be principal if A6 = aé, where A is the shape operator in the
direction of C. By making use of this notion and the results of Takagi’s
classification, Kimura [4] proved the following.

THEOREM A. Let M be a connected real hypersurface of CP™. Then
M has constant principal curvature and £ is principal if and only if M
is locally congruent to one of the following:

(A;) a tube over a hyperplane CP™1.
(A3) a tube over a tolly geodesic CP¥(1 < k < n —2).
(B) a tube over a complex quadric Qn—1.
(C) a tube over CP! x CP(*=1/2 and n(> 5) is odd.
(D) a tube over a complex Grassmann G3 5(C) and n = 9.
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(E) a tube over a Hermitian symmetric space SO(10)/U(5) and
n = 15.

According to Takagi’s classification [9], the principal curvatures and
their multiplicities of the above homogeneous real hypersurfaces are
given.

On the other hand, real hypersurfaces of a complex hyperbolic space
CH"™ have been investigated by Berndt [1}, Montiel [6], Montiel and
Romero {7]. In particular, by using the notion of the tube in Cecil
and Ryan [2], Montiel [6] classified the real hypersurface of complex
hyperbolic space with at most two distinct principal curvatures.

Recently, Berndt [1] classified all real hypersurfaces with constant prin-
cipal curvature of CH™ under the condition such that ¢ is principal.
Namely he proved the following,.

THEOREM B. Let M be a connected real hypersurface of CH™(n > 2).
Then M has constant principal curvatures and ¢ is principal if and only
if M is locally congruent to one of the following:

(Ao) a horosphere in CH™.
(A1) a tube over a complex hyperbolic hyperplane CH™!.
(A2) a tube over a totally geodesic submanifold CH¥(1 <k <n — 2).

(B) a tube over a totally real hyperbolic space RH™.

In the present paper, one obtains the tensorian representation about
real hypersurfaces of type B in M™(c) (¢ # 0) which characterizes them.
The purpose of this paper is to prove the following:

THEOREM. Let M be a real hypersurface of type B in M™(c), ¢ # 0.
Then VxA(Y) = a[2n(X)(A® — 2A)Y + n(Y)(A® — PA)X + g((AD —
3PA)X,Y)E] if and only if M is locally congruent to a real hypersurface
of type B, where a € R.

1. Preliminaries

Let M be a real hypersurface of M™(c) and let C be its unit normal
vector field on a neighborhood of a point z in M. For arbitrary vector
fields X and Y on M we define a tensor field ¢ of type (1,1), a vector
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field £ and a 1-form n on M by ¢(¢X,Y) = G(JX,Y) and ¢(§,X) =
n(X) = ¢g(JX,C), that is; M has an almost contact metric structure
induced from the almost complex structure J on M™(c), where g denotes

the Riemannian metric of M induced from the Riemannian metric G of
M?"(c). Then we have

(11) X ==X +5(X), £ =0, n(¢X) =0, () =1

for any tangent vector field X on M.
Futhermore, the covariant derivatives of the structure tensors are ob-
tained:

(1.2) Vx¢(Y)=nY)AX — g(AX,Y), Vx&=¢AX,

where V is the induced Riemannian connection of ¢g. Since the ambi-
ent space M"(c) is of constant holomorphic sectional curvature c, the
equation of Gauss and Codazzi are respectively given as follows:

(1.3)
R(X,Y)Z = £{g(Y,2)X - g(X, 2)Y + g(¢Y,2)$X — g(¢X, Z)$Y
— 2g(6X,Y)$Z} + g(AY, Z)AX — g(AX, Z)AY,

(14) VxA(Y) - Vy AX) = Z{n(X)#Y — n(Y)$X — 29(4X,Y)E},

where R denotes the Riemannian curvature tensor of M. Using (1.3),
the Ricci tensor S of M is acquired:

(1.5) S:E{(2n+1)I—3n®§}+hA~A2,

where h = trace A and I being the identity transformation.

Recently, in order to give an another characterization of homogeneous
hypersurfaces of type A;, A2 and B in CP", Kimura and Maeda [5]
introduced the notion of a p-parallel second fundamental form, which
was defined by ¢(VxA(Y),Z) = 0 for any tangent vector fields X, Y
and Z orthogonal to £. Now, we prepare without proof the followings:
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THEOREM C ([5]). Let M be a real hypersurface of CP™. Then the
second fundamental form is n—parallel and £ is principal if and only if
M is locally congruent to one of the homogeneous real hypersurfaces of
type A;, As or B.

THEOREM D ([8]). Let M be a real hypersurface of CH™. Then the
second fundamental form is n-parallel and £ is principal if and only if
M is locally congruent to one of type Ag, A1, Ay or B.

2. Tensorian representation of type B

Let M be a real hypersurface of type B in a complex space form
M™(c),c # 0 (n > 3). Then the structure vector £ is principal, that is,

(2.1) A€ = o
and
(2.2) A¢p+ A = k¢, where k = —c/a.

In this case, it is seen that a is given by 1/c cot 20, 0 < 6 < 7/2 when
¢ > 0 and v/—c tanh 26, 0 < 8 < o when ¢ < 0. So the covariant
derivative of (2.1) gives

VxA(f) = apAX — AJAX,

where we have used the second equation of (1.2). Thus it follows from
(1.4) that

2A6AX = (A + Ad)X + §¢X,
which coupled with (2.2) leads to

[

4¢'

(2.3) APA =
Moreover, using (2.2) and (2.3), we obtain

2 o
(42— kA~ $)p =0,
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which together with (1.1) and (2.1) implies
(24) A2 —kA- = pEO,

where f = a® —ka— £ € R.
Taking the covariant derivative of (2.4) along M and using the second
formula of (1.2), we get
(2.5)
VxA(AY)+ AV x A(Y) - kVxA(Y )= B{n(Y)pAX + 9(¢AX,Y )£} =0

for any tangent vector fields X and Y.
Replacing X by AX into the last equation and making use of (2.4), 1t
1s clear that

(2.6) {VaxA(AY)+ AV4xA(Y) - kVax A(Y)}
— Bin(Y)(k¢A+ 79)(X) + {kg(#AX,Y) + Z9(4X,¥)}¢] = 0

for any tangent vector fields X and Y. Since g(VaxA(AY),Z) =
9d(VaxA(Z),AY), we make use of (1.4), (2.1), (2.3), (2.4) and (2.5),

we then have

(2.7)
9(Vax A(AY), Z)

= — 39(VZAX),Y) ~ 2{n(Y)e($2,X) +n(X)g($2,Y )}
+ ${an(X)g(¢2, AY) + 2an(Y)g(AX. $2) + $n(Z)9(X, Y )},
which connected with (2.6) and (1.4) gives rise to

g(VaxA(AY) + AV 4x A(Y) — kV ax A(Y), Z)
=~ H{9(VZAX),Y) + o(Vy A(X), 2)} — kg(Vy A(Z), AX)

+0(X)[7{0(AY, 62) + 9(AZ, )} — Zkag(Y, 2)]
+0(¥)[-3P9(X.6Z) + Sag(AX,92)+(7)*9(#X,2)+ - ke(6AX )]

+0(2)()9(#X.Y )~ B9(X Y )+ 5ag(AX,8Y )+ 5kg(SAX,Y ).
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And, from (2.6), the last equation yields
T{9(VZAY), X) + g(Vy A(Z), X)} + kg(Vy A(Z), AX)
= A(X)Salg(AY, $2) +9(AZ,8Y)} + 5 9(4Y, )
+1(Y)((5)9(#X, 2) + 9(AX, $Z)(Bk + 5o — 7F)]
C

+0(2)(5)*9(6X,Y) + g(AX, Y )(Bk + s = 5H),

which linked with the definition of 8 leads to

(2.8)
T{9(VZAY), X) + 9(Vy A(2), X)} + kg(Vy A(Z), AX)

- En(X)[a{g(AY, $Z) +9(AZ,8Y)} +cg(¢Y, Z)]
+ 2n(V)Z9(8X, 2) + 2(k — a)g(AX, 2)]

c c
+7n(2)[79(6X,Y) + (k- 2a)g(AX, $Y)].
On the other hand, from (2.5), we win

(29) 9(VxA(Y),AZ) + ¢(VxA(Z), AY)
= kg(VxA(Y), Z) ~ B{n(Y )9(AX, $2) + n(Z)g(AX, $7 )}

and taking the symmetric part of (2.8) with respect to X and Z, we get

{9(VxA(Y),Z) + 29(Vy A(Z), X) + 9(VZ A(X),Y)}

+ L {o(Vy AZ), AX) + o(Vy A(X), 42)}

= 2(X){ag(AY, 62) + (k — @)g(AZ, 4Y) + 3co($Y, D)}
+2(k — a)n(Y {g(AX, $2) + o(4X, A2))
+1(2){ag($X, AY) + (k — a)g(AX, V) + Jg(X, $Y)},
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which combined with (2.9) and (1.4) gives forth

“(¥ + 0)9(Vy A(2), X) = (k — o)n(X){39(AY, 62) + g(AZ, $Y)}

+2n(Y){9(AX,42) + g(¢X,AZ)}
+1(2){9(AX, ¢Y) + 39(¢X, AY)}].

From the definition of k, we have k —a = —1(a? + ¢) and k2 4+c=

% (a? + c), and hence a® + ¢ # 0 because M is of type B. Thus we
attain

(2.10)
VxA(Y) = - Z20(X)(A¢ — SA)Y +n(Y)(Ad - 36A)X

+9((A¢ — 3¢4)X, Y){]
for any tangent vector fields X and Y.

REMARK 2.1. Let M be a real hypersurface of type B in M"(c), ¢ #
0 (n = 3). Then equation (2.10) is equivalent to

(211) VxA(Y) =~ {n(Y)$X +g(¢X,Y)¢}
o SINX)GA — AD)Y + (Y )P4 — AP)X + g(($4 = 49)X, Y )E}.

Indeed, making use of (2.2), we get Ad — 3¢A = 2(A¢ — 9A) — k¢,
which connected with (2.10) implies

VxA(Y) =S (Y )9X + o(9X, V)]

+S(X)($A - A)Y +n(Y)($A - 4)X
+9((64 — A9)X, Y )E].

Therefore, from the definition of k, the assertion is true.

REMARK 2.2. It was proved that if real hypersurfaces of M™(c) satisfy
(2.10), then ¢ is principal [3].

From the above remark, we get a tensorian representation of real hy-
persurfaces of type B in M"(c). Namely we have
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THEOREM 2.1. Let M be a real hypersurface of M™(c), ¢ # 0. Then
VxA(Y)=a2n(X)(A¢—9A)Y +n(Y)(A¢—9A)X +9((Ad—36A)X,Y)E]
. if and only if M is locally congruent to a real hypersurface of type B,
where a € R.

Proof. Tt is enough to show the “only if” part is true.
Let M satisfies (2.10), then £ is principal and M is n-parallel. So, by
using the Theorem C and D, the proof is completed since the equation
(2.12) is not realized for real hypersurfaces of type A (type A means A,
or A; when ¢ > 0 and Ay, A; or A; when ¢ < 0).

REMARK 2.3. The tensorian representation in above theorem is mean-
ingful because we obtain the results which coincide with Takagi’s and
Berndt’s table by the different proof from theirs. In fact, let M be a real
hypersurface of type B in M™(c), then M satisfies the equation (2.11).
Putting Y = { in (2.11) and using (1.1), we get

(2.12) VxA(£) = _§¢X+%{U(X)¢A§+(@A-A¢)X+g(x, BAL)E},
which joined with the second formula of (1.2) implies
(2.13) VeA(E) = aVeé.

For any point  on M we can choose an orthonormal basis {E1,. . . ,Fan-1}
for the tangent space T M such that Vg, E; =0 (¢,5,...,2n—1). Then
differentiating (2.11) covariantly along M and making use of (1.2), we
have

(2.14)
VwVxA(Y) = —g{g(quW, Y)oX + g(6X,Y)pAW
+ (X )n(Y)AW + n(X)g(AW,Y )¢ — 29(Y )g(AW, X)¢}
+ S [9(6AW, X)($A — AB)Y + g(#AW,Y )($4 — A¢)X
+ 9((0A — AP) X, Y)PAW + n(X){n(AY)AW + g(AW,Y )AL
—29(A’W,Y)E + ¢VwA(Y) — ViwA($Y)} + (Y ){n(AX)AW
+ g(AW, X)AE — 2(X) AW + ¢V A(X) — Vi A(6X)}
+ {n(AX)g(AW,Y) + n(AY )g(AW, X ) — 2n(Y )g(A*W, X)
—9(VwA(X), ¢Y) — g(VwA(¢X),Y)}],
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which combined with the Ricci formula for the shape operator A gives
forth

(2.15)
R(W,X)AY — A(R(W,X)Y)

= — S{o($AW, Y)$X — g(AX,Y)$W + g($X,Y)pAW

— 9(¢W,Y)$AX + n(X)n(Y)AW — n(W)n(Y)AX
+n(X)g(AW, Y )¢

~n(W)g(AX, Y )} + Slo(($4 + AS)W, X)($4 ~ AS)Y

+g(PAW, Y )(6A — Ad)X — g(¢AX,Y)(¢A — AS)W

+9((0A - AP)X,Y)PAW — g((¢A — AP)W,Y)$AX

+0(X) {n(AY)AW + g(AW,Y) AL — 29(A*W, Y )€ + $Vw A(Y)
— VwA(¢Y)}

—n(W){n(AY)AX +g(AX,Y)AE — 29(A*X,Y )¢
+ ¢V A(Y) — Vx A(¢Y)}

+ () {n(AX)AW — n(AW)AX — 2p(X)A*W
+2n(W)A*X + ¢V A(X)

— VX AW) - VwA(6X) + Vx A($W)} + {n(AX)g(AW,Y)
- n(AW)g(AX,Y)

—9(VwA(X),8Y) + g(Vx A(W),8Y) — g(Vw A(¢X),Y)
+9(VxA(8W),Y)}].

If we put W = E; in (2.15), taking the inner product of this result and
E; and summing up with respect to: (1 =1,...,2n — 1), we find

(2.16)
hAZX + {g(n +1) = hy + a2 }AX + z—(a —B)X

=—cPADX + —;—(c — ah)n(X)AE + (g - %h + a®)n(AX)¢

_ [.Z.h + %{(Z_n;_l)c + 2a® — 2hy (X )€
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+ %{A@A@X — BABAX — 20A%BX + 2(AX)AL
~n(X)A%{ +n(A%X)E},

where we put hy = trace A® and used (1.1), (1.4), (1.5) and (2.11). Now,
if we use (2.13), then ¢ ApA = ApA¢, which connected with (2.16) gives

hA? 4 {g(n +1)—hy+o?}A+ E(a —m)I

(2n —1)

5+ 202 + 20k — 2k }E Q€ = —apA%P— cpAS,

ela—2)+

where we have used (2.1).

Since M is of type B, the shape operator A of M has three distinct
principal curvatures (say a, A, p)such that AX = AX and ApX = popX
for any tangent vector field X orthogonal to £. The last equation yields

BA? 4+ {Z(n+1) — by + a®}A + £ (@ — h) = —ap® —cp
and similarly we get
hi? + {5(n+1) —hy +o®hu + (e — ) = —aX® A,

Combining the last two equations, we find (h — a)(A+ p) + 5(n - 1)+
a® — hy = 0, where we have used the fact A — p # 0. Since we have
h—oa=(n—1)A+ ) and hy = a® + (n — 1)(A? + u?) because A and p
have multiplicity n — 1 respectively, it follows that

[4
2.17 \y=_S
(2.17) k=71

On the other hand, it is, using (2.1), seen that (A — $)p = 2 + £,
which joined with (2.17) yields ad2 el — i—a = 0 and hence we see that

a=+/ccot 26, A= —?cot(e—%) or — %_Etan(ﬂ—z-)

when ¢ > 0 and

a =+/—ctan h20, A = Vz_ccot h& or Vz_ctan ho
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when ¢ < 0.
This results coincide with Takagi’s table Berndt’s one according to ¢ > 0
and ¢ < 0, respectively.
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