• Title/Summary/Keyword: real function

Search Result 3,922, Processing Time 0.031 seconds

A VERTEX PROPERTY OF REAL FUNCTION ALGEBRAS

  • Hwang, Sun-Wook
    • The Pure and Applied Mathematics
    • /
    • v.5 no.1
    • /
    • pp.65-72
    • /
    • 1998
  • We investigate a chain of properties of real function algebras along the analogous proofs of the complex cases such as the fact that any real function algebra which is both maximal and essential is pervasive. And some properties of real function algebras with a vertex property will be discussed.

  • PDF

ON A GENERALIZATION OF THE P$\'{O}$LYA-WIMAN CONJECTURE

  • Kim, Young-One
    • Communications of the Korean Mathematical Society
    • /
    • v.9 no.4
    • /
    • pp.825-830
    • /
    • 1994
  • This paper is concerned with the zeros of successive derivatives of real entire functions. In order to state our results, we introduce the following notations : An entire function which assumes only real values on the real axis is said to be a real entire function. Thus, if a complex number is a zero of a real entire function, then its conjugate is also a zero of the same function.

  • PDF

REAL QUADRATIC FUNCTION FIELDS OF MINIMAL TYPE

  • Byeon, Dongho;Keem, Jiae;Lee, Sangyoon
    • Communications of the Korean Mathematical Society
    • /
    • v.28 no.4
    • /
    • pp.735-740
    • /
    • 2013
  • In this paper, we will introduce the notion of the real quadratic function fields of minimal type, which is a function field analogue to Kawamoto and Tomita's notion of real quadratic fields of minimal type. As number field cases, we will show that there are exactly 6 real quadratic function fields of class number one that are not of minimal type.

SAMPLING EXPANSION OF BANDLIMITED FUNCTIONS OF POLYNOMIAL GROWTH ON THE REAL LINE

  • Shin, Chang Eon
    • Communications of the Korean Mathematical Society
    • /
    • v.29 no.2
    • /
    • pp.379-385
    • /
    • 2014
  • For a bandlimited function with polynomial growth on the real line, we derive a nonuniform sampling expansion using a special bandlimited function which has polynomial decay on the real line. The series converges uniformly on any compact subsets of the real line.

CONTINUITY OF THE FRACTIONAL PART FUNCTION AND DYNAMICS OF CIRCLE

  • LAL, BABU;MIGLANI, ASEEM;SINGH, VIZENDER
    • Journal of applied mathematics & informatics
    • /
    • v.40 no.5_6
    • /
    • pp.1167-1179
    • /
    • 2022
  • In this paper, we obtain some subsets of real numbers (ℝ) on which a fractional part function is defined as a real-valued continuous function. This gives rise to the analysis of the continuous properties of the fractional part function as a real-valued function. The analysis of fractional part function is helpful in the study of the dynamics of circle.

EVALUATION OF THE ZETA FUNCTIONS OF TOTALLY REAL NUMBER FIELDS AND ITS APPLICATION

  • Lee, Jun Ho
    • East Asian mathematical journal
    • /
    • v.35 no.1
    • /
    • pp.85-90
    • /
    • 2019
  • In this paper, we are interested in the evaluation of special values of the Dedekind zeta function of a totally real number field. In particular, we revisit Siegel method for values of the zeta function of a totally real number field at negative odd integers and explain how this method is applied to the case of non-normal totally real number field. As one of its applications, we give divisibility property for the values in the special case