References
- D. Byeon and S. Lee, A note on units of real quadratic fields, Bull. Korean Math. Soc. 49 (2012), no. 4, 767-774. https://doi.org/10.4134/BKMS.2012.49.4.767
- K. Feng and W. Hu, On real quadratic function fields of Chowla type with ideal class number one, Proc. Amer. Math. Soc. 127 (1999), no. 5, 1301-1307. https://doi.org/10.1090/S0002-9939-99-05004-2
- K. Feng and S. Sun, On class number of quadratic fields, Proceeding of First International Symposium on Algebraic Structures and Number Theory (1988, Hong Kong), Edited by S. P. Lam and K. P. Shum, World Scientific, (1990), 88-133.
- R. Hashimoto, Ankeny-Artin-Chowla conjecture and continued fraction, J. Number Theory 90 (2001), no. 1, 143-153. https://doi.org/10.1006/jnth.2001.2652
- F. Kawamoto and K. Tomita, Continued fractions and certain real quadratic fields of minimal type, J. Math. Soc. Japan 60 (2008), no. 3, 865-903. https://doi.org/10.2969/jmsj/06030865
- M. Madan and C. Queen, Algebraic function fields of class number one, Acta Arith. 20 (1972), 423-432. https://doi.org/10.4064/aa-20-4-423-432
- J. Mc Laughlin, Multi-variable polynomial solutions to Pell's equation and fundamental units in real quadratic fields Pacific J. Math. 210 (2003), no. 2, 335-349. https://doi.org/10.2140/pjm.2003.210.335
- A. Stein, Introduction to continued fraction expansion in real quadratic function fields, Preprint.