• Title/Summary/Keyword: real focal point

Search Result 29, Processing Time 0.026 seconds

Development of an Application Software for the Die-Production Information Management (금형 생산관리를 위한 응용 소프트웨어의 개발)

  • Kong, Myung-Dal;Kim, Jung-Ja
    • IE interfaces
    • /
    • v.9 no.2
    • /
    • pp.143-158
    • /
    • 1996
  • This paper deals with the development of a software module for production planning and scheduling activities of an actual die-production management system. Scheduling problems, such as master schedule and detailed schedule, are the focal point of the whole article and they are considered in terms of operation procedures. Schedule-explosion module and load levelling module are the essential components of schedule management. The scheduling module allocates the resources, determines the process priority and the planned start and completion dates of processes. Rescheduling can be done to manipulate unforeseen situations that schedule is delayed owing to inducing defectives, machine breakdowns and lumpy demands. This study indicates a practical model for the die-producation management and helps to apply it for jobs in the real situation.

  • PDF

Attitude Control of a Quad-rotor using CMG (CMG를 이용한 쿼드-로터의 자세제어)

  • Oh, Kyung-Hyun;Choi, Ho-Lim
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.7
    • /
    • pp.695-700
    • /
    • 2014
  • In this paper, we utilize the CMG's momentum bias to control the roll/pitch attitude of the Quad-rotor. While the previous control approaches have used the thrust control approach, we design and add a new momentum controller (using CMG) in order to improve the transient response over the existing methods. The focal point of this paper is the design of a controller for a Quad-rotor's attitude using CMG. This leads to other tasks such as an identification of the model's parameters and mathematical nonlinear modeling. Then, the previous thrust controller is designed based on the linearized model. Finally, the overall system with our designed controller is implemented and tested in real time to show that the Quad-rotor is kept in a good balanced position faster than the traditional thrust-only control approach.

Effect of dynamic range consumption for microholographic data storage system (마이크로 홀로그래픽 시스템에서 미디어의 소진효과)

  • Kim, Do-Hyung;Min, Cheol-Ki;Cho, Jang-Hyun;Kim, Nak-Yeong;Park, Kyoung-Su;Park, No-Cheol;Yang, Hyun-Seok;Park, Young-Pil
    • Transactions of the Society of Information Storage Systems
    • /
    • v.7 no.1
    • /
    • pp.31-35
    • /
    • 2011
  • In microholographic data storage system (MDSS), compact recording is required to achieve high capacity.[1] When the data is recorded, neighbor monomer is also affected by reaction at the focal point.[2,3] This unintended process caused more monomer consumption and degradation of total capacity. To avoid this extra consumption of dynamic range, it is required to define the effective dynamic range for MDSS. In this paper, we experimentally investigate the relation between dynamic range consumption and micro grating formation. Dynamic range consumption was monitored by real time read-out system. Micrograting was recorded with different consumption ratio and compared by diffraction efficiency of track direction. Finally, we define suitable dynamic range for MDSS.

Determining Spatial Neighborhoods in Indoor Space using Integrated IndoorGML and IndoorPOI data

  • Claridades, Alexis Richard;Lee, Jiyeong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.5
    • /
    • pp.467-476
    • /
    • 2020
  • Indoor space has been one of the focal points for geospatial research as various factors such as increasing demands for application and demand for adaptive response in emergencies have arisen. IndoorGML (Indoor Geography Markup Language) has provided a standardized method of representing the topological aspect of micro-scale environments, with its extensive specifications and flexible applicability. However, as more real-world problems and needs demand attention, suggestions to improve this standard, such as representing IndoorPOI (Indoor Points of Interest), have arisen. Hence, existing algorithms and functionalities that we use on perceiving these indoor spaces must also adapt to accommodate said improvements. In this study, we explore how to define spatial neighborhoods in indoor spaces represented by an integrated IndoorGML and IndoorPOI data. We revisit existing approaches to combine the aforementioned datasets and refine previous approaches to perform neighborhood spatial queries in 3D. We implement the proposed algorithm in three use cases using sample datasets representing a real-world structure to demonstrate its effectiveness for performing indoor spatial analysis.

Fabrication of carbon nanotube fibers with nanoscale tips and their field emission properties

  • Shin, Dong-Hoon;Song, Ye-Nan;Sun, Yu-Ning;Shin, Ji-Hong;Lee, Cheol-Jin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.468-468
    • /
    • 2011
  • Carbon nanotubes (CNTs) have been considered as one of the promising candidate for next-generation field emitters because of their unique properties, such as high field enhancement factor, good mechanical strength, and excellent chemical stability. So far, a lot of researchers have been interested in field emission properties of CNT itself. However, it is necessary to study proper field emitter shapes, as well as the fundamental properties of CNTs, to apply CNTs to real devices. For example, specific applications, such as x-ray sources, e-beam sources, and microwave amplifiers, need to get a focused electron beam from the field emitters. If we use planar-typed CNT emitters, it will need several focal lenses to reduce a size of electron beam. On the other hand, the point-typed CNT emitters can be an effective way to get a focused electron beam using a simple technique. Here, we introduce a fabrication of CNT fibers with nanoscale point tips which can be used as a point-typed emitter. The emitter made by the CNT fibers showed very low turn-on electric field, high current density, and large enhancement factor. In addition, it showed stable emission current during long operation period. The high performance of CNT point emitter indicated the potential e-beam source candidate for the applications requiring small electron beam size.

  • PDF

Finite element-based software-in-the-loop for offline post-processing and real-time simulations

  • Oveisi, Atta;Sukhairi, T. Arriessa;Nestorovic, Tamara
    • Structural Engineering and Mechanics
    • /
    • v.67 no.6
    • /
    • pp.643-658
    • /
    • 2018
  • In this paper, we introduce a new framework for running the finite element (FE) packages inside an online Loop together with MATLAB. Contrary to the Hardware-in-the-Loop techniques (HiL), in the proposed Software-in-the-Loop framework (SiL), the FE package represents a simulation platform replicating the real system which can be out of access due to several strategic reasons, e.g., costs and accessibility. Practically, SiL for sophisticated structural design and multi-physical simulations provides a platform for preliminary tests before prototyping and mass production. This feature may reduce the new product's costs significantly and may add several flexibilities in implementing different instruments with the goal of shortlisting the most cost-effective ones before moving to real-time experiments for the civil and mechanical systems. The proposed SiL interconnection is not limited to ABAQUS as long as the host FE package is capable of executing user-defined commands in FORTRAN language. The focal point of this research is on using the compiled FORTRAN subroutine as a messenger between ABAQUS/CAE kernel and MATLAB Engine. In order to show the generality of the proposed scheme, the limitations of the available SiL schemes in the literature are addressed in this paper. Additionally, all technical details for establishing the connection between FEM and MATLAB are provided for the interested reader. Finally, two numerical sub-problems are defined for offline and online post-processing, i.e., offline optimization and closed-loop system performance analysis in control theory.

pH Sensitive Graphene Field-Effect Transistor(FET) (pH에 민감한 그래핀 전계효과 트랜지스터(FET))

  • Park, Woo Hwan;Song, Kwang Soup
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.2
    • /
    • pp.117-122
    • /
    • 2016
  • Recently, the detection of pH with real-time and in vivo has been focal pointed in the environmental or medical fields. In this work, we developed the pH sensor using graphene sheet. Graphene has high biocompatibility. We fabricated flexible solution-gated field-effect transistors (SGFETs) on graphene sheet transferred on the polyethylene terephthalate (PET) substrate to detect pH in electrolyte solution. The gate length was $500{\mu}m$ and the gate width was 8 mm. We evaluated the current-voltage (I-V) transfer characteristics of graphene SGFETs in pH solution. The drain-source current ($I_{DS}$) and the gate-source voltage ($V_{GS}$) curves of graphene SGFETs were depended on pH value. The Dirac point of graphene SGFETs linearly shifted to the positive direction about 19.32 mV/pH depending on the pH value in electrolyte solution.

Construction of LiDAR Dataset for Autonomous Driving Considering Domestic Environments and Design of Effective 3D Object Detection Model (국내 주행환경을 고려한 자율주행 라이다 데이터 셋 구축 및 효과적인 3D 객체 검출 모델 설계)

  • Jin-Hee Lee;Jae-Keun Lee;Joohyun Lee;Je-Seok Kim;Soon Kwon
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.18 no.5
    • /
    • pp.203-208
    • /
    • 2023
  • Recently, with the growing interest in the field of autonomous driving, many researchers have been focusing on developing autonomous driving software platforms. In particular, we have concentrated on developing 3D object detection models that can improve real-time performance. In this paper, we introduce a self-constructed 3D LiDAR dataset specific to domestic environments and propose a VariFocal-based CenterPoint for the 3D object detection model, with improved performance over the previous models. Furthermore, we present experimental results comparing the performance of the 3D object detection modules using our self-built and public dataset. As the results show, our model, which was trained on a large amount of self-constructed dataset, successfully solves the issue of failing to detect large vehicles and small objects such as motorcycles and pedestrians, which the previous models had difficulty detecting. Consequently, the proposed model shows a performance improvement of about 1.0 mAP over the previous model.

Multi-focus 3D display of see-through Head-Mounted Display type (투시형 두부 장착형 디스플레이방식의 다초점 3차원 디스플레이)

  • Kim, Dong-Wook;Yoon, Seon-Kyu;Kim, Sung-Kyu
    • Journal of Broadcast Engineering
    • /
    • v.11 no.4 s.33
    • /
    • pp.441-447
    • /
    • 2006
  • See-through HMD type 3D display can provide an advantage of us seeing virtual 3D data used stereoscopic display simultaneously with real object(MR-Mixed Reality). But, when user sees stereoscopic display for a long time, not only eye fatigue phenomenon happens but also de-focus phenomenon of data happens by fixed focal point of virtual data. Dissatisfaction of focus adjustment of eye can be considered as the important reason of this phenomenon. In this paper, We proposed an application of multi-focus in see-through HMD as a solution of this problem. As a result, we confirmed that the focus adjustment coincide between the object of real world and the virtual data by multi-focus in monocular condition.

An educational analysis on ratio concept (비 개념에 대한 교육적 분석)

  • 정은실
    • Journal of Educational Research in Mathematics
    • /
    • v.13 no.3
    • /
    • pp.247-265
    • /
    • 2003
  • The purpose of this study is to analyze the essence of ratio concept from educational viewpoint. For this purpose, it was tried to examine contents and organizations of the recent teaching of ratio concept in elementary school text of Korea from ‘Syllabus Period’ to ‘the 7th Curriculum Period’ In these text most ratio problems were numerically and algorithmically approached. So the Wiskobas programme was introduced, in which the focal point was not on mathematics as a closed system but on the activity, on the process of mathematization and the subject ‘ratio’ was assigned an important place. There are some educational implications of this study which needs to be mentioned. First, the programme for developing proportional reasoning should be introduced early Many students have a substantial amount of prior knowledge of proportional reasoning. Second, conventional symbol and algorithmic method should be introduced after students have had the opportunity to go through many experiences in intuitive and conceptual way. Third, context problems and real-life situations should be required both to constitute and to apply ratio concept. While working on contort problems the students can develop proportional reasoning and understanding. Fourth, In order to assist student's learning process of ratio concept, visual models have to recommend to use.

  • PDF