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Abstract
Indoor space has been one of the focal points for geospatial research as various factors such as increasing 
demands for application and demand for adaptive response in emergencies have arisen. IndoorGML (Indoor 
Geography Markup Language) has provided a standardized method of representing the topological aspect 
of micro-scale environments, with its extensive specifications and flexible applicability. However, as more 
real-world problems and needs demand attention, suggestions to improve this standard, such as representing 
IndoorPOI (Indoor Points of Interest), have arisen. Hence, existing algorithms and functionalities that we use on 
perceiving these indoor spaces must also adapt to accommodate said improvements. In this study, we explore 
how to define spatial neighborhoods in indoor spaces represented by an integrated IndoorGML and IndoorPOI 
data. We revisit existing approaches to combine the aforementioned datasets and refine previous approaches 
to perform neighborhood spatial queries in 3D. We implement the proposed algorithm in three use cases using 
sample datasets representing a real-world structure to demonstrate its effectiveness for performing indoor spatial 
analysis.
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1. Introduction 

Interest in 3D indoor space has been increasing due to 
different factors such as the ubiquity of mobile devices 
that trigger more services indoors (Kim and Lee, 2018)  
development of advanced construction technologies (Kang 
et al., 2015) the long time spent by humans inside structures 
(Klepeis et al., 2001), and the spaces themselves being 
increasingly complex (Worboys, 2011). Though indoor 
applications frequently mirror the outdoor environment’s 
needs, the structure of indoor space and the datasets that 
represent it demand different approaches.

Because of its dimensionality, indoor spaces tend to have 
more regular geometries but tend to be more intricate (Giudice 
et al., 2010). The representation of indoor space itself would 

depend on which aspect is vital in the analysis- geometry, 
semantics, or topological relationships. Topological models 
have been of interest in multiple studies as the field moves 
towards problem-solving and decision making, from 
merely as a data integration and presentation tool (Ellul and 
Haklay, 2006) requirements in three-dimensional (3D. The 
relationships of spaces represented in topological models 
have been crucial, especially in navigation, emergency 
situations, and LBS (Location-Based Services).

IndoorGML (Indoor Geographic Markup Language) has 
been established by the OGC (Open Geospatial Consortium) 
as the standard for indoor spatial information due to the 
demand for a formal standard defining requirements of 
indoor space applications (OGC, 2018). IndoorGML is 
heavily based on the Node-Relation Structure (J. Lee and 
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Kwan, 2005) to represent topological relationships among 
spaces, and can represent space flexibly through the MLSM 
(Multi-layer Space Model) (Becker et al., 2009). However, 
more definitions are necessary to increase the standard’s 
applicability in more LBS applications despite the strong core 
concept, so proponents have been preparing for IndoorGML 
2.0 et al., 2020). 

Moreover, the current version of IndoorGML still has not 
provided a representation of features contained within the 
indoor spaces, represented as IndoorPOI (Indoor Points of 
Interest) but are crucial for navigation and LBS. Just like in 
the outdoors, IndoorPOIs can also hierarchically represent 
spaces and support time-series analysis. (Claridades and 
Lee, 2020). Recent studies within the past year have also 
described critical characteristics of IndoorPOI in contrast 
to its outdoor counterparts as well as its integration with 
IndoorGML using various approaches such as utilizing the 
MLSM (Claridades and Lee, 2020; Claridades et al., 2019) 
or appending an attribute to the IndoorGML core module, 
particularly the CellSpace class (Diakité et al., 2020).

Regardless, the availability of topological models has 
facilitated a greater understanding of indoor space and its 
relationships with other spaces, or the objects it contains 
within. One fundamental functionality that describes how 
entities in indoor 3D space interact is the concept of Spatial 
Neighborhood. Using the NRS (Node-Relation Structure), 
neighborhoods based on adjacency, rather than distance may 
be expressed for indoors, while maintaining the concept of 
the continuity of space (S. Lee et al., 2010; I. Park and Lee, 
2010). The NRS models, based on the Poincare duality, only 
the spaces. To fully understand indoor space, we also have 
to take the IndoorPOIs into account and understand how the 
objects and spaces represented by the latter can affect our 
notion of proximity. 

In this paper, we build and improve on a method to describe 
spatial neighborhoods for NRS data towards applying it on 
an integrated IndoorGML and IndoorPOI data. The paper is 
structured as follows. In the following section, we examine 
previous studies related to our purpose, and then we describe 
our methodology to express 3D neighborhoods in indoor 
spaces. Following those, we demonstrate our algorithms 
using sample datasets using data for a university building. 

The last section summarizes our conclusions and possible 
directions for future work.

2. Related Literature

In this section, we review how the NRS, and eventually 
IndoorGML, has represented indoor space. We revisit how 
the importance of representing IndoorPOI data together with 
these spaces and various approaches that make this possible. 
We also look at how previous studies have implemented 
neighborhood analysis in indoor space represented by NRS.

Lee and Kwan (2005) proposed the NRS to represent 
topological relationships more efficiently in indoor spaces 
compared with boundary representation models. It simply, 
but elegantly, abstracts relationships between sub-units of 
indoor space while improving computational efficiency by 
avoiding the direct use of 3D objects (J. Lee and Kwan, 2005). 
Studies have shown that among topological models, queries 
implemented on network-based data such as the NRS are 
more efficient (S. Lee and Lee, 2010). Based on this approach, 
IndoorGML was established by OGC as a defining standard 
for indoor space representation, particularly in providing 
LBS indoors (OGC, 2018), and currently remains to be one 
of the main interest of researchers of 3D GIS (Diakité et al., 
2020; Gunduz et al., 2016). Based on how the NRS abstracts 
indoor space, IndoorGML uses the process of duality in 
order to represent topological relationships- 3D spaces are 
represented as nodes, while the edges represent respective 
relationships. This standard has been one focus of attention 
for researchers that concern with indoor space, as this has 
versatile enough concepts that encapsulate representation of 
various levels of hierarchy in space, handling semantic and 
geometric information, as well as external referencing for 
extending applications with other datasets. 

Since the first version of IndoorGML arose out of the 
indoor spatial data community’s urgent requirements for 
standardization, and the goal is that the standard may handle 
inadequacies such as the capability to handle indoor facility 
management in the next version. One aspect for such an 
application is the ability to represent objects in indoor space 
in the form of IndoorPOI. With wide-ranging applications 
in Indoor LBS such as in navigation (Zeinalipour-Yazti and 
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Laoudias, 2017; Zhang and Ye, 2017), localization (Alaoui et 
al., 2017; Zhuang et al., 2010)absolute position updates are 
made possible with the online detection of different types 
of points of interest (POIs, and for landmarks (Willems, 
2017), IndoorGML still ignores this in representation in the 
standard. 

Jung and Lee (2017) initially utilized the idea of using 
IndoorPOI data along with IndoorGML as the core to 
create an omnidirectional image-based indoor patrol 
application to demonstrate how these data plays a role in 
facilities management indoors (Jung and Lee, 2017). Based 
on this study’s method of utilizing the Within relationships 
between the objects and spaces, the MLSM concept became 
the key concept for an approach to integrate IndoorGML 
and IndoorPOI data. This integration considers whether 
represented by 3D geometry or point primitive objects 
(Claridades et al., 2019). Conversely, Diakite et al. (2020) 
suggested utilizing a Boolean variable in the CellSpace class 
to denote that a cell is a POI. Furthermore, the re-definition 
of IndoorGML to accommodate IndoorPOI data accounts 
as a more substantial support for LBS, along with indoor 
feature modeling and inclusion of IoT sensors (Sarmiento and 
Diakité, 2020) These recent efforts to expand the standard 
is leading towards a newer version of IndoorGML. Studies 
on the data models for POI and IndoorPOI cite the indoor 
space as a critical application area, and concepts compatible 
integration with IndoorGML is available (Claridades and 
Lee, 2020; J. Park et al., 2017).

The determination of spatial relationships is one 
fundamental functionality of systems that use geospatial 
information. Along with the various approaches of 
representing indoor space, different methods of performing 
query operations are of question. Based on the relationships 
defined by the 9-intersection model (Clementini et al., 1994)
for which current database solutions are inappropriate. 
Topological relations, such as disjoint, meet, overlap, inside, 
and contains, have been well defined by the 9-intersection, 
a comprehensive model for binary topological relations. 
We focus on two types of queries: (1, Bormann and Rank 
(2009) used SQL (Structured Query Language) to perform 
topological analysis on 3D building models based on the 
3D Formal Data Structure (Rikkers et al., 1994). Recursive 

algorithms traverse octree representations of these models 
and handle topological relationships in a fuzzy manner, so 
computation speed does not sacrifice accuracy (Borrmann 
and Rank, 2009) 

Data models that represent indoor space based on geometry 
have larger data sizes and more complexity, so processing 
speeds are generally slower and less efficient compared to 
topology-based counterparts, and within topological models 
network-based models perform better in topological spatial 
analysis over boundary models (J. Lee and Kwan, 2005). 
Furthermore, Lee and Lee (2010) have shown that adjacency 
queries performed on network models outperform those 
performed on boundary representations (S. Lee and Lee, 
2010).

To define spatial neighborhoods conveniently and 
accurately in 3D indoor space represented by the NRS, 
Lee et al. (2010) proposed a process based on Dijkstra’s 
algorithm. The main goal is to define these neighborhoods 
in an adjacency-based manner, compared to the conventional 
distance-based buffers that are computationally expensive to 
perform in 3D and may be counterintuitive to perform on 
topological models. Spatial neighborhoods usually occur 
on a degree basis. For example, 1st-order neighbors are 
those spaces that are immediately adjacent to each other- 
hence connected by a single edge on the NRS. The number 
of the spaces’ direct connections through the edges in the 
NRS define the higher degrees (2nd-order, 3rd-order, and 
more)  (I. Park and Lee, 2010)2001, geospatial researchers 
have been interested in utilizing GIScience technologies to 
solve geographical questions in micro-scale space in built-
environments such as indoor space within a building. The 
indoor space should be dealt with differently from outdoor 
space in order to provide integrated and seamless location-
based services (Li, 2009. Hence, in executing the Dijkstra’s 
algorithm, a fixed value of 1 was used as the weight for 
edges in determining degrees, regardless of what the edge 
represents in the NRS (S. Lee et al., 2010). 

As NRS, and eventually, IndoorGML captures topological 
relationships among spaces, the study of spatial syntax has 
also taken advantage of graph theory to create mind maps of 
spaces (Hillier, 2012). Space syntax concerns the investigation 
of spatial layouts and the relevant human activity, especially 
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in urban areas. One of its significant components focuses 
on spatial representations, where applications schematically 
locate phenomena in spaces into graphs, effectively showing 
configurations and reproducing hierarchical relationships. 
Discrete spatial elements describe space, and these elements 
also include those that relate to human behavior, not just 
geometric configurations of space (UCL, 2020). Consider 
Fig. 1 adapted from the UCL (University College London) 
Space Syntax Laboratory, where a house, on the left, is 
represented as a graph on the left, where the spaces are nodes 
and the areas for movement between spaces are links, very 
similar to the NRS. This graph can then be reconfigured in 
multiple ways, say from the view of the entrance (lower left) 
or from a specific room (lower right). This is an example of 
analyzing the same space to examine spatial relationships 
that occur within it. 

Fig. 1. Representation of spaces in the Space Syntax 
concept

The Space Syntax theory imposes that space is not just a 
mere container for human activity but is a vital component 
to it. Any object contained in a space, and space itself, 
influences any activity or event held in that space (UCL, 
2020). Implementations of this theory utilize variables 
assigned to edges that describe relevant spatial configurations 
that may be intangible in the real world space (Bafna, 2003). 
Multiple studies have applied this simple yet robust method of 
abstraction to representing transportation systems, cognition 
and socio-economic phenomena in urban spaces, and even 
human behavior (Van Nes and Yamu, 2018).

3. Methodology

In this section, we describe the framework to perform 
neighborhood analysis using an integrated IndoorGML and 
Indoor POI data. Then we illustrate the algorithms to perform 
this analysis, based on a modified Dijkstra’s algorithm. Fig. 
2 below illustrates the framework for our methodology. 
IndoorGML-based data composed of nodes and edges 
represent indoor spaces and their topological relationships, 
respectively. On the other hand, point-based IndoorPOI 
data represent objects inside the Indoor space, or in some 
cases, indoor spaces as well. We combine these two datasets 
using an approach described in Claridades and Lee (2019) to 
obtain the integrated data, which in turn is the base dataset 
for performing the 3D network-based neighborhood query. 
Finally, given a target object or target object, represented 
by nodes in the integrated data, and desired degree of 
relationship, the algorithm yields the spatial neighborhoods.

Fig. 2. Framework for 3D Neighborhood Query for 
integrated IndoorGML and IndoorPOI data

First, we combine the IndoorGML data representing 
the indoor space and the IndoorPOI data that represents 
the objects contained in those spaces. We take the case of 
representing the IndoorPOI data through point objects. 
Through the MLSM concept, we can define two separate 
Space Layers, one for the indoor space, and another one 
for the IndoorPOI space. The real-world space undergoes 
a process of duality to towards an NRS representation. At 
the same time, we classify the objects and spaces in the 
IndoorPOI data into non-navigable (yet approachable) spaces 
and navigable spaces, respectively. We combine the latter 
with the nodes from the previous step to generate the nodes 
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and edges in the Indoor Space Layer, and the IndoorPOI is in 
a separate IndoorPOI Space Layer. Consequently, these two 
layers have a Within inter-layer relationship. Fig. 3 illustrates 
this process.

Fig. 3. Integrating IndoorGML data with IndoorPOI 
represented as point data

The integrated data is now input to the neighborhood 
query. A modified Dijkstra’s algorithm can calculate degrees 
of network-based neighborhoods for the spaces surrounding 
a target node. This target node may either represent an 
indoor space or an object contained in these spaces. The 
algorithm is heavily-based on a weight variable, which 
represents how this algorithm conceptualizes neighborhood 
relationships the query analysis. For the most basic cases, we 
may assign a constant value, for example, a weight equal to 
one (1) for each edge to signify that a node connected by a 
single edge to another node is a First-order neighbor of each 
other. This constant value means each node in the graph 
connected through a single edge corresponds to a 1st-order 
neighborhood relationship, or in other words, conceptualizing 
neighborhoods in a degree-based manner. Furthermore, we 
can define the inter-layer relationship between the IndoorPOI 
Space and the Indoor Space, specifically, the within 
relationship between the object and the space that contains it 
as a 0-order neighborhood.

In contrast, utilizing the space syntax concept, we can 
conceptualize a phenomenon in space through numerical 
values and abstract the same in the edges, assigning varying 
numerical values, depending on how we abstract proximity. 
This weight variable can now numerically represent a 
strength of neighborhood relationships. This strength-based 
approach expands the applicability of the algorithm by more 

realistically incorporating real-world relationships, not just 
connectivity or adjacency. 

Upon selecting the target node, the algorithm assigns 
every other node a respective degree of neighborhood 
concerning the target node through a priority-queue method. 
The priority-queue method ensures that the assigned degree 
for each node is the least possible degree of neighborhood, or 
in other words, the minimum number of edges that connect 
a particular node to the target node. After determining 
all degrees of neighborhood for each node, the algorithm 
performs a query to determine nodes within the n-th order 
spatial neighborhood based on the user-specified degree. The 
resulting graph contains all nodes having an assigned degree 
less than the query argument and the edges connecting said 
nodes. Table 1 illustrates the pseudocode for the procedure 
described above.

Hence, analysis is possible on either indoor environment 
components represented by IndoorGML data, on the 
IndoorPOI, or the indoor spaces themselves, depending on 
the needs of the application. Fig. 4 illustrates the possible 
analysis cases where the proposed algorithm may be 
applied. Analysis of an indoor space’s neighborhood is 
applicable for indoor navigation and guidance purposes, 
while an analysis targeting an IndoorPOI is ideal for facility 
management applications. In either case, we can also analyze 
neighborhoods based on degrees (orders) or through a 
strength-based approach.  The degree-based analysis relies 
on the adjacency and connectivity graphs themselves and 
only focuses on the topological relationships of the spaces. 

Fig. 4. Conceptual framework of the proposed algorithm
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Conversely, the strength-based analysis is a more 
generalized approach, which may be applicable for specific 
application cases where the phenomena vary among the 
spaces continuously.  Furthermore, the edges may represent 
either an adjacency or connectivity relationship, depending 
on the needs of the application. For example, analysis of 
neighborhoods for emergency evacuation situations might 
use connectivity graphs, but applications leaning towards 
environmental analysis, such as noise and smoke spread, 
might use adjacency graphs. 

4. Experimental Implementation

In this section, we implement algorithms described in 
a previous section on experimental data representing the 
indoor spaces, and some sample IndoorPOI data of the 21st 
Century Hall of the University of Seoul, South Korea. For 
simplicity and ease of illustration, the results shown are from 
the 6th floor of this building. Fig. 5 shows the experimental 
study area.

Fig. 5. Study area of the experimental implementation
We conduct the experimental implementation using ESRI 

ArcScene, a commercial application capable of executing 
spatial analysis tools from the fundamental ArcMap while 
still enabling 3D visualization. In this paper, we consider the 
case where point primitives represent the IndoorPOI data. 
First, an NRS-based IndoorGML data represents the indoor 
spaces through undergoing a process of duality. The nodes 
in this graph represent all navigable spaces. Then, the point-
represented IndoorPOI data, in this case, only representing 
objects inside the building, represents non-navigable spaces. 
The edges in the sample data represent the navigable paths 
between the spaces. The datasets undergo a union operation 
in preparation for the implementation of the algorithms in the 
previous section. Fig. 6 illustrates this process.

Pseudocode. 3DNeighborhoodQuery (Graph, sourceNode, degree)

Step 1: User selects sourceNode.
Step 2:  Assign weight on the edges, constant value for degree-based or a variable for strength-based
Step 3:  Perform Dijkstra’s Algorithm, modifiedDijkstra(Graph, sourceNode,)
            Step 3.1:  For every node in G(v) except the sourceNode, define dist[v] as infinity. Add the node to priority queue Q.
            Step 3.2: Set dist[sourceNode] = 0.
            Step 3.3: Check which v in Q has the minimum value for dist. Set this node as u. Remove u from Q.
            Step 3.4:  For each v still in Q, connected to u through an edge[u,v] , calculate alt = dist[u] + weight [edge]. If alt is less 

than dist[v], replace dist[v] by alt. Decrease priority of v in Q.
            Step 3.5: Repeat Step 3.3 and Step 3.4 while Q is still non-empty. 
            Step 3.6: Return all dist[v].
Step 4: Calculate Spatial Neighborhoods, neighborhood (Graph, sourceNode, degree)
            Step 4.1:  Obtain all nodes w in G(v) such that dist[w] with respect to targetNode is less than or equal to degree as 

Ordered_Nodes
            Step 4.2: Return all edges connecting the Ordered_Nodes as Ordered_Edges 
            Step 4.3: Return all Ordered_Nodes, Ordered_Edges

Table 1. Pseudocode for the 3D adjacency-based Neighborhood Query
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Fig. 6. Result of Integrating the IndoorGML and 
IndoorPOI data

We consider three implementation cases in this paper—
first, a spatial neighborhood query for an indoor space 
through a degree-based analysis, and the latter as degree-
based and strength-based neighborhood for an IndoorPOI. 
For the first case, consider the space highlighted in Fig. 7. 
This highlighted space is a sub-section of a long hallway, 
equivalent to a single node in the IndoorGML data. Suppose 
we are interested in finding second-order neighbors of this 
space, or up to the spaces adjacent to the immediately adjacent 
spaces. A green flag marks the target space for this query in 
Fig. 8. Similar to the results of Lee et al. (2010) and Park and 
Lee (2010), the algorithm can locate 2nd-order neighborhoods, 
which is marked blue in the same figure.

Fig. 7. Location of the selected target space for the 
neighborhood spatial query

Fig. 8. Results of the Neighborhood spatial query for the 
target space

For the second case of implementation, we consider an 
object or facility in indoor space, say, a WiFi (Wireless 
Fidelity) router, shown in Fig. 9. Suppose we are interested 
in the coverage area of this equipment- for example, this 
router has a signal strong enough to reach devices for up to 
three rooms. We would want to identify, in this case, 3rd-order 
neighborhoods of the said WiFi router. Fig. 10 illustrates the 
result of this query. We consider the space containing the 
facility a 0-order neighborhood since the object has a within 
relationship with the space. Then the adjacent spaces to this 
containing space are 1st-order neighbors, and so on.

Fig. 9. Location of the target IndoorPOI for the 
neighborhood spatial query

Fig. 10. Results of the degree-based neighborhood spatial 
query for the target IndoorPOI

Finally, for the third case of implementation, we still 
consider the coverage area of this equipment, and this 
router has a signal strong enough to reach devices for up 
to three rooms. We would want to identify, in this case, 3rd-
order neighborhoods of the said WiFi router. However, we 
consider that walls can obstruct WiFi signals. Hence, we 
apply different weights on the edges connecting rooms to the 
hallways, compared to the edges connecting hallway spaces. 
Fig. 11 illustrates the weights applied to the edges. We have 
assigned a weight value that considers signal strength in each 
space as obstructed by concrete walls. 
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Fig. 11. Applying weights for a strength-based 
neighborhood spatial query

Now, running the same query for 3rd-order neighbors, but 
now with applied weights, we obtain the result in Fig. 12. 
Similarly, the space containing the facility is the 0-order 
neighborhood, and the adjacent spaces to this containing 
space are 1st-order neighbors, and so on. However, along the 
hallway, the 2nd-order neighborhood extends to the spaces 
that are adjacent to the target space’s adjacent spaces (i.e., 
previous case’s 3rd-order neighborhoods) since the weight 
assigned to the hallway edges is smaller than the edges 
that connect to the room. Hence, we more have 3rd-order 
neighborhoods that extend towards the ends of the hallways, 
following the logic that WiFi signal strength can travel better 
in hallways, compared to rooms that are beside each other 
because concrete walls hinder signal propagation in the latter.

Fig. 12. Results of the strength-based neighborhood spatial 
query for the target IndoorPOI

5. Conclusions and Future Studies

OGC has established IndoorGML as the indoor spatial 
information standard, but current needs in applications 
trigger efforts in integrating data, pending the official 

update of this standard. Literature demonstrated efforts to 
integrate IndoorPOI with IndoorGML data as an effective 
way to extend information contained in the latter, for 
LBS applications. However, along with the changes in the 
datasets that represent indoors, we must also rethink how we 
execute fundamental spatial operations that help us perceive 
relationships and interactions between and among the spaces 
and the objects within.

In this paper, we examined the implementation of 
neighborhood spatial queries on indoor spaces and objects 
represented by IndoorGML and IndoorPOI data. We 
revisit definitions of the spatial neighborhood through this 
reconfigured notion of space, and using a modified Dijkstra’s 
algorithm, propose an algorithm to calculate n-degrees of 
neighborhood on the integrated dataset. Finally, we conduct 
an experimental implementation of this method using sample 
data using three cases- with reference to either a space or an 
object in indoor space. We have also shown how determining 
neighborhoods based only on degrees of network adjacency 
may differ on how applications can define neighborhoods on 
a weighted basis. 

Towards a more realistic representation of space, 
studies are now moving towards integrating indoor and 
outdoor space. Hence, in future studies, we would like to 
extend this application towards a seamless identification 
of neighborhoods in continuous indoor and outdoor 
representations. Furthermore, since our proposed algorithm 
operates based on a network-based representation, other 
approaches for grasping neighborhood relationships in 
other types of representations for 3D indoor spaces, such as 
geometric models, must be investigated.
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