DOI QR코드

DOI QR Code

Finite element-based software-in-the-loop for offline post-processing and real-time simulations

  • Oveisi, Atta (Mechanics of Adaptive Systems, Institute of Computational Engineering, Ruhr-Universitat Bochum) ;
  • Sukhairi, T. Arriessa (Mechanics of Adaptive Systems, Institute of Computational Engineering, Ruhr-Universitat Bochum) ;
  • Nestorovic, Tamara (Mechanics of Adaptive Systems, Institute of Computational Engineering, Ruhr-Universitat Bochum)
  • Received : 2017.12.24
  • Accepted : 2018.07.07
  • Published : 2018.09.25

Abstract

In this paper, we introduce a new framework for running the finite element (FE) packages inside an online Loop together with MATLAB. Contrary to the Hardware-in-the-Loop techniques (HiL), in the proposed Software-in-the-Loop framework (SiL), the FE package represents a simulation platform replicating the real system which can be out of access due to several strategic reasons, e.g., costs and accessibility. Practically, SiL for sophisticated structural design and multi-physical simulations provides a platform for preliminary tests before prototyping and mass production. This feature may reduce the new product's costs significantly and may add several flexibilities in implementing different instruments with the goal of shortlisting the most cost-effective ones before moving to real-time experiments for the civil and mechanical systems. The proposed SiL interconnection is not limited to ABAQUS as long as the host FE package is capable of executing user-defined commands in FORTRAN language. The focal point of this research is on using the compiled FORTRAN subroutine as a messenger between ABAQUS/CAE kernel and MATLAB Engine. In order to show the generality of the proposed scheme, the limitations of the available SiL schemes in the literature are addressed in this paper. Additionally, all technical details for establishing the connection between FEM and MATLAB are provided for the interested reader. Finally, two numerical sub-problems are defined for offline and online post-processing, i.e., offline optimization and closed-loop system performance analysis in control theory.

Keywords

References

  1. Adhikari, S., Friswell, M.I., Lonkar, K. and Sarkar, A. (2009), "Experimental case studies for uncertainty quantification in structural dynamics", Probab. Eng. Mech., 24(4), 473-492. https://doi.org/10.1016/j.probengmech.2009.01.005
  2. Bertagne, C. and Hartl, D. (2014), "Feedback control applied to finite element models of morphing structures", ASME 2014 Conf. Smart Mater. Adapt. Struct. Intell. Syst. SMASIS 2014, 1, 1-10.
  3. Bossi, L., Rottenbacher, C., Mimmi, G. and Magni, L. (2011), "Multivariable predictive control for vibrating structures: An application", Contr. Eng. Pract., 19(10), 1087-1098. https://doi.org/10.1016/j.conengprac.2011.05.003
  4. Bruant, I., Gallimard, L. and Nikoukar, S. (2010), "Optimal piezoelectric actuator and sensor location for active vibration control, using genetic algorithm", J. Sound Vibr., 329(10), 1615-1635. https://doi.org/10.1016/j.jsv.2009.12.001
  5. Claeys, M., Sinou, J.J., Lambelin, J.P. and Alcoverro, B. (2014), "Multi-harmonic measurements and numerical simulations of nonlinear vibrations of a beam with non-ideal boundary conditions", Commun. Nonlin. Sci. Numer. Simul., 19(12), 4196-4212. https://doi.org/10.1016/j.cnsns.2014.04.008
  6. Favoreel, W., De Moor, B. and Van Overschee, P. (2000), "Subspace state space system identification for industrial processes", J. Proc. Contr., 10(2), 149-155. https://doi.org/10.1016/S0959-1524(99)00030-X
  7. Gabbert, U., Duvigneau, F. and Ringwelski, S. (2017), "Noise control of vehicle drive systems", Facta Univ. Ser. Mech. Eng., 15(2), 183. https://doi.org/10.22190/FUME170615009G
  8. Gao, L., Lu, Q.Q., Fei, F., Liu, L.W., Liu, Y.J. and Leng, J.S. (2013), "Active vibration control based on piezoelectric smart composite", Smart Mater. Struct., 22(12).
  9. Gawronski, W.K. (2004), Dynamics and Control of Structures: A Modal Approach.
  10. Hasheminejad, S.M.M. and Oveisi, A. (2016), "Active vibration control of an arbitrary thick smart cylindrical panel with optimally placed piezoelectric sensor/actuator pairs", Int. J. Mech. Mater. Des., 12(1), 1-16. https://doi.org/10.1007/s10999-015-9293-2
  11. Jae-Hung, H. and In, L. (1999), "Optimal placement of piezoelectric sensors and actuators for vibration control of a composite plate using genetic algorithms", Smart Maer. Struct., 8(2), 257. https://doi.org/10.1088/0964-1726/8/2/012
  12. Karagulle, H., Malgaca, L. and Oktem, H.F. (2004), "Analysis of active vibration control in smart structures by ANSYS", Smart Mater. Struct., 13(4), 661-667. https://doi.org/10.1088/0964-1726/13/4/003
  13. Kerschen, G., Worden, K., Vakakis, A.F. and Golinval, J.C. (2006), "Past, present and future of nonlinear system identification in structural dynamics", Mech. Syst. Sign. Proc., 20(3), 505-592. https://doi.org/10.1016/j.ymssp.2005.04.008
  14. Kim, J., Varadan, V.V. and Varadan, V.K. (1995), "Finite elementoptimization methods for the active control of radiated sound from a plate structure", Smart Mater. Struct., 4(4), 318-326. https://doi.org/10.1088/0964-1726/4/4/012
  15. Landau, I.D., Castellanos Silva, A., Airimitoaie, T.B., Buche, G. and Noe, M. (2013), "Benchmark on adaptive regulationrejection of unknown/time-varying multiple narrow band disturbances", Eur. J. Contr., 19(4), 237-252. https://doi.org/10.1016/j.ejcon.2013.05.007
  16. Lewis, F.L. (1996), Optimal Control.
  17. Lim, Y.H., Gopinathan, S.V., Varadan, V.V. and Varadan, V.K. (1999), "Finite element simulation of smart structures using an optimal output feedback controller for vibration and noise control", Smart Mater. Struct., 8(3), 324-337. https://doi.org/10.1088/0964-1726/8/3/305
  18. Macijejowski, J.M. (1989), Multivariable Feedback Design.
  19. Nestorovic, T., Marinkovic, D., Chandrashekar, G., Marinkovic, Z. and Trajkov, M. (2012), "Implementation of a user defined piezoelectric shell element for analysis of active structures", Fin. Elem. Anal. Des., 52, 11-22. https://doi.org/10.1016/j.finel.2011.11.006
  20. Nestorovic, T. and Trajkov, M. (2013), "Optimal actuator and sensor placement based on balanced reduced models", Mech. Syst. Sign. Proc., 36(2), 271-289. https://doi.org/10.1016/j.ymssp.2012.12.008
  21. Nestorovic, T., Trajkov, M. and Garmabi, S. (2015), "Optimal placement of piezoelectric actuators and sensors on a smart beam and a smart plate using multi-objective genetic algorithm", Smart Struct. Syst., 15(4), 1041-1062. https://doi.org/10.12989/sss.2015.15.4.1041
  22. Noel, J.P. and Kerschen, G. (2017), "Nonlinear system identification in structural dynamics: 10 more years of progress", Mech. Syst. Sign. Proc., 83, 2-35. https://doi.org/10.1016/j.ymssp.2016.07.020
  23. Noel, J.P. and Schoukens, J. (2017), "Grey-box state-space identification of nonlinear mechanical vibrations", Int. J. Contr., 1-22.
  24. Omidi, E. and Mahmoodi, S.N. (2015), "Sensitivity analysis of the nonlinear integral positive position feedback and integral resonant controllers on vibration suppression of nonlinear oscillatory systems", Commun. Nonlin. Sci. Numer. Simul., 22(1), 149-166. https://doi.org/10.1016/j.cnsns.2014.10.011
  25. Omidi, E., Mahmoodi, S.N. and Shepard, W.S. (2015), "Vibration reduction in aerospace structures via an optimized modified positive velocity feedback control", Aerosp. Sci. Technol., 45, 408-415. https://doi.org/10.1016/j.ast.2015.06.012
  26. Orszulik, R.R. and Gabbert, U. (2016), "An interface between Abaqus and Simulink for high-fidelity simulations of smart structures", IEEE/ASME Trans. Mechatron., 21(2), 879-887. https://doi.org/10.1109/TMECH.2015.2496727
  27. Oveisi, A. and Nestorovic, T. (2016), "Robust nonfragile observerbased H2/$H{\infty}$ controller", J. Vibr. Contr., 1077546316651548.
  28. Oveisi, A. and Nestorovic, T. (2016), "Robust observer-based adaptive fuzzy sliding mode controller", Mech. Syst. Sign. Proc., 76-77, 58-71. https://doi.org/10.1016/j.ymssp.2016.01.015
  29. Oveisi, A. and Nestorovic, T. (2017), "Transient response of an active nonlinear sandwich piezolaminated plate", Commun. Nonlin. Sci. Numer. Simul., 45, 158-175. https://doi.org/10.1016/j.cnsns.2016.09.012
  30. Oveisi, A., Nestorovic, T. and Nguyen, N.L. (2016), "Semianalytical modeling and vibration control of a geometrically nonlinear plate", Int. J. Struct. Stab. Dyn., 1771003.
  31. Paduart, J., Lauwers, L., Swevers, J., Smolders, K., Schoukens, J. and Pintelon, R. (2010), "Identification of nonlinear systems using polynomial nonlinear state space models", Automat., 46(4), 647-656. https://doi.org/10.1016/j.automatica.2010.01.001
  32. Peng, F. (2005), "Actuator placement optimization and adaptive vibration control of plate smart structures", J. Intell. Mater. Syst. Struct., 16(3), 263-271. https://doi.org/10.1177/1045389X05050105
  33. Puri, G.M. (2011), Python Scripts for Abaqus: Learn by Example, 1st Edition, Charleston, South Carolina, U.S.A.
  34. Rahman, N. and Alam, M.N. (2012), "Active vibration control of a piezoelectric beam using PID controller: Experimental study", Lat. Am. J. Sol. Struct., 9, 657-673. https://doi.org/10.1590/S1679-78252012000600003
  35. Ramesh Kumar, K. and Narayanan, S. (2007), "The optimal location of piezoelectric actuators and sensors for vibration control of plates", Smart Mater. Struct., 16(6), 2680-2691. https://doi.org/10.1088/0964-1726/16/6/073
  36. Ramesh Kumar, K. and Narayanan, S. (2008), "Active vibration control of beams with optimal placement of piezoelectric sensor/actuator pairs", Smart Mater. Struct., 17(5), 055008. https://doi.org/10.1088/0964-1726/17/5/055008
  37. Ray, L.R., Koh, B.H. and Tian, L. (2000), "Damage detection and vibration control in smart plates: Towards multifunctional smart structures", J. Intell. Mater. Syst. Struct., 11(9), 725-739. https://doi.org/10.1177/104538900772663946
  38. Sadri, A.M., Wright, J.R. and Wynne, R.J. (1999), "Modelling and optimal placement of piezoelectric actuators in isotropic plates using genetic algorithms", Smart Mater. Struct., 8(4), 490-498. https://doi.org/10.1088/0964-1726/8/4/306
  39. Sadri, A.M., Wright, J.R. and Wynne, R.J. (2002), "LQG control design for panel flutter suppression using piezoelectric actuators", Smart Mater. Struct., 11(6), 834-839. https://doi.org/10.1088/0964-1726/11/6/302
  40. Shakeri, R. and Younesian, D. (2016), "Broad-band noise mitigation in vibrating annular plates by dynamic absorbers", Int. J. Struct. Stab. Dyn., 16(6), 1550014. https://doi.org/10.1142/S0219455415500145
  41. Skogestad, S. and Postlethwaite, I. (2007), Multivariable Feedback Control: Analysis and Design, Lavoisier.fr.
  42. Soize, C. (2005), "Random matrix theory for modeling uncertainties in computational mechanics", Comput. Meth. Appl. Mech. Eng., 194(12-16), 1333-1366. https://doi.org/10.1016/j.cma.2004.06.038
  43. Stojanovic, V. (2015), "Geometrically nonlinear vibrations of beams supported by a nonlinear elastic foundation with variable discontinuity", Commun. Nonlin. Sci. Numer. Simul., 28(1-3), 66-80. https://doi.org/10.1016/j.cnsns.2015.04.002
  44. Vel, S.S. and Baillargeon, B.P. (2004), "Active vibration suppression of smart structures using piezoelectric shear actuators", Proceedings of the 15th International Conference on Adaptive Structures and Technologies.
  45. Wills, A., Ninness, B.M. and Gibson, S. (2009), "Maximum Likelihood Estimation of state space models from frequency domain data", IEEE Trans. Automat. Contr., 54(1), 19-33. https://doi.org/10.1109/TAC.2008.2009485
  46. Xu, S.X. and Koko, T.S. (2004), "Finite element analysis and design of actively controlled piezoelectric smart structures", Fin. Elem. Anal. Des., 40(3), 241-262. https://doi.org/10.1016/S0168-874X(02)00225-1

Cited by

  1. Soft Finger Modelling and Co-Simulation Control towards Assistive Exoskeleton Hand Glove vol.12, pp.2, 2018, https://doi.org/10.3390/mi12020181