Browse > Article
http://dx.doi.org/10.12989/sem.2018.67.6.643

Finite element-based software-in-the-loop for offline post-processing and real-time simulations  

Oveisi, Atta (Mechanics of Adaptive Systems, Institute of Computational Engineering, Ruhr-Universitat Bochum)
Sukhairi, T. Arriessa (Mechanics of Adaptive Systems, Institute of Computational Engineering, Ruhr-Universitat Bochum)
Nestorovic, Tamara (Mechanics of Adaptive Systems, Institute of Computational Engineering, Ruhr-Universitat Bochum)
Publication Information
Structural Engineering and Mechanics / v.67, no.6, 2018 , pp. 643-658 More about this Journal
Abstract
In this paper, we introduce a new framework for running the finite element (FE) packages inside an online Loop together with MATLAB. Contrary to the Hardware-in-the-Loop techniques (HiL), in the proposed Software-in-the-Loop framework (SiL), the FE package represents a simulation platform replicating the real system which can be out of access due to several strategic reasons, e.g., costs and accessibility. Practically, SiL for sophisticated structural design and multi-physical simulations provides a platform for preliminary tests before prototyping and mass production. This feature may reduce the new product's costs significantly and may add several flexibilities in implementing different instruments with the goal of shortlisting the most cost-effective ones before moving to real-time experiments for the civil and mechanical systems. The proposed SiL interconnection is not limited to ABAQUS as long as the host FE package is capable of executing user-defined commands in FORTRAN language. The focal point of this research is on using the compiled FORTRAN subroutine as a messenger between ABAQUS/CAE kernel and MATLAB Engine. In order to show the generality of the proposed scheme, the limitations of the available SiL schemes in the literature are addressed in this paper. Additionally, all technical details for establishing the connection between FEM and MATLAB are provided for the interested reader. Finally, two numerical sub-problems are defined for offline and online post-processing, i.e., offline optimization and closed-loop system performance analysis in control theory.
Keywords
software-in-the-loop; finite element; optimal placement; structural optimization; vibration control;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Kerschen, G., Worden, K., Vakakis, A.F. and Golinval, J.C. (2006), "Past, present and future of nonlinear system identification in structural dynamics", Mech. Syst. Sign. Proc., 20(3), 505-592.   DOI
2 Kim, J., Varadan, V.V. and Varadan, V.K. (1995), "Finite elementoptimization methods for the active control of radiated sound from a plate structure", Smart Mater. Struct., 4(4), 318-326.   DOI
3 Landau, I.D., Castellanos Silva, A., Airimitoaie, T.B., Buche, G. and Noe, M. (2013), "Benchmark on adaptive regulationrejection of unknown/time-varying multiple narrow band disturbances", Eur. J. Contr., 19(4), 237-252.   DOI
4 Lewis, F.L. (1996), Optimal Control.
5 Lim, Y.H., Gopinathan, S.V., Varadan, V.V. and Varadan, V.K. (1999), "Finite element simulation of smart structures using an optimal output feedback controller for vibration and noise control", Smart Mater. Struct., 8(3), 324-337.   DOI
6 Macijejowski, J.M. (1989), Multivariable Feedback Design.
7 Nestorovic, T., Marinkovic, D., Chandrashekar, G., Marinkovic, Z. and Trajkov, M. (2012), "Implementation of a user defined piezoelectric shell element for analysis of active structures", Fin. Elem. Anal. Des., 52, 11-22.   DOI
8 Nestorovic, T. and Trajkov, M. (2013), "Optimal actuator and sensor placement based on balanced reduced models", Mech. Syst. Sign. Proc., 36(2), 271-289.   DOI
9 Nestorovic, T., Trajkov, M. and Garmabi, S. (2015), "Optimal placement of piezoelectric actuators and sensors on a smart beam and a smart plate using multi-objective genetic algorithm", Smart Struct. Syst., 15(4), 1041-1062.   DOI
10 Noel, J.P. and Kerschen, G. (2017), "Nonlinear system identification in structural dynamics: 10 more years of progress", Mech. Syst. Sign. Proc., 83, 2-35.   DOI
11 Oveisi, A. and Nestorovic, T. (2016), "Robust nonfragile observerbased H2/$H{\infty}$ controller", J. Vibr. Contr., 1077546316651548.
12 Omidi, E. and Mahmoodi, S.N. (2015), "Sensitivity analysis of the nonlinear integral positive position feedback and integral resonant controllers on vibration suppression of nonlinear oscillatory systems", Commun. Nonlin. Sci. Numer. Simul., 22(1), 149-166.   DOI
13 Omidi, E., Mahmoodi, S.N. and Shepard, W.S. (2015), "Vibration reduction in aerospace structures via an optimized modified positive velocity feedback control", Aerosp. Sci. Technol., 45, 408-415.   DOI
14 Orszulik, R.R. and Gabbert, U. (2016), "An interface between Abaqus and Simulink for high-fidelity simulations of smart structures", IEEE/ASME Trans. Mechatron., 21(2), 879-887.   DOI
15 Oveisi, A. and Nestorovic, T. (2016), "Robust observer-based adaptive fuzzy sliding mode controller", Mech. Syst. Sign. Proc., 76-77, 58-71.   DOI
16 Oveisi, A. and Nestorovic, T. (2017), "Transient response of an active nonlinear sandwich piezolaminated plate", Commun. Nonlin. Sci. Numer. Simul., 45, 158-175.   DOI
17 Noel, J.P. and Schoukens, J. (2017), "Grey-box state-space identification of nonlinear mechanical vibrations", Int. J. Contr., 1-22.
18 Oveisi, A., Nestorovic, T. and Nguyen, N.L. (2016), "Semianalytical modeling and vibration control of a geometrically nonlinear plate", Int. J. Struct. Stab. Dyn., 1771003.
19 Paduart, J., Lauwers, L., Swevers, J., Smolders, K., Schoukens, J. and Pintelon, R. (2010), "Identification of nonlinear systems using polynomial nonlinear state space models", Automat., 46(4), 647-656.   DOI
20 Peng, F. (2005), "Actuator placement optimization and adaptive vibration control of plate smart structures", J. Intell. Mater. Syst. Struct., 16(3), 263-271.   DOI
21 Ramesh Kumar, K. and Narayanan, S. (2008), "Active vibration control of beams with optimal placement of piezoelectric sensor/actuator pairs", Smart Mater. Struct., 17(5), 055008.   DOI
22 Puri, G.M. (2011), Python Scripts for Abaqus: Learn by Example, 1st Edition, Charleston, South Carolina, U.S.A.
23 Rahman, N. and Alam, M.N. (2012), "Active vibration control of a piezoelectric beam using PID controller: Experimental study", Lat. Am. J. Sol. Struct., 9, 657-673.   DOI
24 Ramesh Kumar, K. and Narayanan, S. (2007), "The optimal location of piezoelectric actuators and sensors for vibration control of plates", Smart Mater. Struct., 16(6), 2680-2691.   DOI
25 Ray, L.R., Koh, B.H. and Tian, L. (2000), "Damage detection and vibration control in smart plates: Towards multifunctional smart structures", J. Intell. Mater. Syst. Struct., 11(9), 725-739.   DOI
26 Skogestad, S. and Postlethwaite, I. (2007), Multivariable Feedback Control: Analysis and Design, Lavoisier.fr.
27 Sadri, A.M., Wright, J.R. and Wynne, R.J. (1999), "Modelling and optimal placement of piezoelectric actuators in isotropic plates using genetic algorithms", Smart Mater. Struct., 8(4), 490-498.   DOI
28 Sadri, A.M., Wright, J.R. and Wynne, R.J. (2002), "LQG control design for panel flutter suppression using piezoelectric actuators", Smart Mater. Struct., 11(6), 834-839.   DOI
29 Shakeri, R. and Younesian, D. (2016), "Broad-band noise mitigation in vibrating annular plates by dynamic absorbers", Int. J. Struct. Stab. Dyn., 16(6), 1550014.   DOI
30 Soize, C. (2005), "Random matrix theory for modeling uncertainties in computational mechanics", Comput. Meth. Appl. Mech. Eng., 194(12-16), 1333-1366.   DOI
31 Favoreel, W., De Moor, B. and Van Overschee, P. (2000), "Subspace state space system identification for industrial processes", J. Proc. Contr., 10(2), 149-155.   DOI
32 Vel, S.S. and Baillargeon, B.P. (2004), "Active vibration suppression of smart structures using piezoelectric shear actuators", Proceedings of the 15th International Conference on Adaptive Structures and Technologies.
33 Wills, A., Ninness, B.M. and Gibson, S. (2009), "Maximum Likelihood Estimation of state space models from frequency domain data", IEEE Trans. Automat. Contr., 54(1), 19-33.   DOI
34 Xu, S.X. and Koko, T.S. (2004), "Finite element analysis and design of actively controlled piezoelectric smart structures", Fin. Elem. Anal. Des., 40(3), 241-262.   DOI
35 Stojanovic, V. (2015), "Geometrically nonlinear vibrations of beams supported by a nonlinear elastic foundation with variable discontinuity", Commun. Nonlin. Sci. Numer. Simul., 28(1-3), 66-80.   DOI
36 Adhikari, S., Friswell, M.I., Lonkar, K. and Sarkar, A. (2009), "Experimental case studies for uncertainty quantification in structural dynamics", Probab. Eng. Mech., 24(4), 473-492.   DOI
37 Bertagne, C. and Hartl, D. (2014), "Feedback control applied to finite element models of morphing structures", ASME 2014 Conf. Smart Mater. Adapt. Struct. Intell. Syst. SMASIS 2014, 1, 1-10.
38 Bossi, L., Rottenbacher, C., Mimmi, G. and Magni, L. (2011), "Multivariable predictive control for vibrating structures: An application", Contr. Eng. Pract., 19(10), 1087-1098.   DOI
39 Bruant, I., Gallimard, L. and Nikoukar, S. (2010), "Optimal piezoelectric actuator and sensor location for active vibration control, using genetic algorithm", J. Sound Vibr., 329(10), 1615-1635.   DOI
40 Claeys, M., Sinou, J.J., Lambelin, J.P. and Alcoverro, B. (2014), "Multi-harmonic measurements and numerical simulations of nonlinear vibrations of a beam with non-ideal boundary conditions", Commun. Nonlin. Sci. Numer. Simul., 19(12), 4196-4212.   DOI
41 Gabbert, U., Duvigneau, F. and Ringwelski, S. (2017), "Noise control of vehicle drive systems", Facta Univ. Ser. Mech. Eng., 15(2), 183.   DOI
42 Gao, L., Lu, Q.Q., Fei, F., Liu, L.W., Liu, Y.J. and Leng, J.S. (2013), "Active vibration control based on piezoelectric smart composite", Smart Mater. Struct., 22(12).
43 Gawronski, W.K. (2004), Dynamics and Control of Structures: A Modal Approach.
44 Hasheminejad, S.M.M. and Oveisi, A. (2016), "Active vibration control of an arbitrary thick smart cylindrical panel with optimally placed piezoelectric sensor/actuator pairs", Int. J. Mech. Mater. Des., 12(1), 1-16.   DOI
45 Karagulle, H., Malgaca, L. and Oktem, H.F. (2004), "Analysis of active vibration control in smart structures by ANSYS", Smart Mater. Struct., 13(4), 661-667.   DOI
46 Jae-Hung, H. and In, L. (1999), "Optimal placement of piezoelectric sensors and actuators for vibration control of a composite plate using genetic algorithms", Smart Maer. Struct., 8(2), 257.   DOI