• Title/Summary/Keyword: real and virtual image

Search Result 381, Processing Time 0.027 seconds

Phase-based virtual image encryption and decryption system using Joint Transform Correlator

  • Seo, Dong-Hoan;Cho, Kyu-Bo;Park, Se-Joon;Cho, Woong-Ho;Noh, Duck-Soo;Kim, Soo-Joong
    • Proceedings of the IEEK Conference
    • /
    • 2002.07a
    • /
    • pp.450-453
    • /
    • 2002
  • In this paper a Phase-based virtual image encryption and decryption techniques based on a joint transform correlator (JTC) are proposed. In this method, an encrypted image is obtained by multiplying a phase-encoded virtual image that contains no information from the decrypted image with a random phase. Even if this encryption process converts a virtual image into a white-noise-like image, the unauthorized users can permit a counterfeiting of the encrypted image by analyzing the random phase mask using some phase-contrast technique. However, they cannot reconstruct the required image because the virtual image protects the original image from counterfeiting and unauthorized access. The proposed encryption technique does not suffer from strong auto-correlation terms appearing in the output plane. In addition, the reconstructed data can be directly transmitted to a digital system for real-time processing. Based on computer simulations, the proposed encryption technique and decoding system were demonstrated as adequate for optical security applications.

  • PDF

3D Visualization Technique for Occluded Objects in Integral Imaging Using Modified Smart Pixel Mapping

  • Lee, Min-Chul;Han, Jaeseung;Cho, Myungjin
    • Journal of information and communication convergence engineering
    • /
    • v.15 no.4
    • /
    • pp.256-261
    • /
    • 2017
  • In this paper, we propose a modified smart pixel mapping (SPM) to visualize occluded three-dimensional (3D) objects in real image fields. In integral imaging, orthoscopic real 3D images cannot be displayed because of lenslets and the converging light field from elemental images. Thus, pseudoscopic-to-orthoscopic conversion which rotates each elemental image by 180 degree, has been proposed so that the orthoscopic virtual 3D image can be displayed. However, the orthoscopic real 3D image cannot be displayed. Hence, a conventional SPM that recaptures elemental images for the orthoscopic real 3D image using virtual pinhole array has been reported. However, it has a critical limitation in that the number of pixels for each elemental image is equal to the number of elemental images. Therefore, in this paper, we propose a modified SPM that can solve this critical limitation in a conventional SPM and can also visualize the occluded objects efficiently.

Study of Feature Based Algorithm Performance Comparison for Image Matching between Virtual Texture Image and Real Image (가상 텍스쳐 영상과 실촬영 영상간 매칭을 위한 특징점 기반 알고리즘 성능 비교 연구)

  • Lee, Yoo Jin;Rhee, Sooahm
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1057-1068
    • /
    • 2022
  • This paper compares the combination performance of feature point-based matching algorithms as a study to confirm the matching possibility between image taken by a user and a virtual texture image with the goal of developing mobile-based real-time image positioning technology. The feature based matching algorithm includes process of extracting features, calculating descriptors, matching features from both images, and finally eliminating mismatched features. At this time, for matching algorithm combination, we combined the process of extracting features and the process of calculating descriptors in the same or different matching algorithm respectively. V-World 3D desktop was used for the virtual indoor texture image. Currently, V-World 3D desktop is reinforced with details such as vertical and horizontal protrusions and dents. In addition, levels with real image textures. Using this, we constructed dataset with virtual indoor texture data as a reference image, and real image shooting at the same location as a target image. After constructing dataset, matching success rate and matching processing time were measured, and based on this, matching algorithm combination was determined for matching real image with virtual image. In this study, based on the characteristics of each matching technique, the matching algorithm was combined and applied to the constructed dataset to confirm the applicability, and performance comparison was also performed when the rotation was additionally considered. As a result of study, it was confirmed that the combination of Scale Invariant Feature Transform (SIFT)'s feature and descriptor detection had the highest matching success rate, but matching processing time was longest. And in the case of Features from Accelerated Segment Test (FAST)'s feature detector and Oriented FAST and Rotated BRIEF (ORB)'s descriptor calculation, the matching success rate was similar to that of SIFT-SIFT combination, while matching processing time was short. Furthermore, in case of FAST-ORB, it was confirmed that the matching performance was superior even when 10° rotation was applied to the dataset. Therefore, it was confirmed that the matching algorithm of FAST-ORB combination could be suitable for matching between virtual texture image and real image.

Remote Monitoring and Control of the Real Robot associated with a Virtual Robot

  • Jeon, Byung-Joon;Kim, Dong-Hwan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.43-48
    • /
    • 2005
  • A robot system encompassing a remote control and monitoring through a virtual robot design is addressed and a tracking problem for a 2D (2 dimension) moving target by a robot vision is chosen as a case study. The virtual robot is developed, and it synchronizes with the real robot by compensating delay time. Two systems are displayed on a remote panel by communicating command and image data. The virtual robot utilizes an OpenGL library in Visual $C^{++}$ environment. Additionally, the remote monitoring and control between the real robot and the virtual robot are accomplished by employing an appropriate data compression in a network communication.

  • PDF

Augmented Reality Using Projective Information (비유클리드공간 정보를 사용하는 증강현실)

  • 서용덕;홍기상
    • Journal of Broadcast Engineering
    • /
    • v.4 no.2
    • /
    • pp.87-102
    • /
    • 1999
  • We propose an algorithm for augmenting a real video sequence with views of graphics ojbects without metric calibration of the video camera by representing the motion of the video camera in projective space. We define a virtual camera, through which views of graphics objects are generated. attached to the real camera by specifying image locations of the world coordinate system of the virtual world. The virtual camera is decomposed into calibration and motion components in order to make full use of graphics tools. The projective motion of the real camera recovered from image matches has a function of transferring the virtual camera and makes the virtual camera move according to the motion of the real camera. The virtual camera also follows the change of the internal parameters of the real camera. This paper shows theoretical and experimental results of our application of non-metric vision to augmented reality.

  • PDF

VirtualDub as a Useful Program for Video Recording in Real-time TEM Analysis (실시간 TEM 분석에 유용한 영상 기록 프로그램, VirtualDub)

  • Kim, Jin-Gyu;Oh, Sang-Ho;Song, Kyung;Yoo, Seung-Jo;Kim, Young-Min
    • Applied Microscopy
    • /
    • v.40 no.1
    • /
    • pp.47-51
    • /
    • 2010
  • The capability of real-time observation in TEM is quite useful to study dynamic phenomena of materials in a certain variable ambience. In performing the experiment, the choice of video recording program is an important factor to obtain high quality of movie streaming. Window Movie Maker (WMM) is generally recommended as a default video recording program if one uses "DV Capture" function in DigitalMicrograph$^{TM}$ (DM) software. However, the image quality does not often satisfy the condition for high-resolution microscopic analysis since the severe information loss in the final result occurs during the conversion process. As a good candidate to overcome this problem, Virtual-Dub is highly recommended since the information loss can be minimized through the streaming process. In this report, we demonstrated how useful VirtualDub works in a high-resolution movie recording. Quantitative comparison of the information quality between the images recorded by each software, WMM and VirtualDub, was carried out based on histogram analysis. As a result, the image recorded by VirtualDub was improved ~13% in brightness and ~122% in contrast compared with the image obtained by WMM at the same imaging condition. Remarkably, the gray gradation (meaning an amount of information) becomes wider up to ~115% than that of the WMM result.

Virtual Holography - A Novel Three-dimensional Image Representation (가상 홀로그램 - 3차원 이미지의 새로운 표현 방법)

  • Kim, Myoung-Jun;Wang, Chi-Kuo-Gregory;Woo, Tony-C.
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 1997.11a
    • /
    • pp.79-85
    • /
    • 1997
  • Virtual holography is a methodology of synthesizing apparent three-dimensional images from two-dimensional photographs. Since the input is photographic images of real objects, the degree of realism exceeds that offered by any computer-aided design software. The three-dimensional appearance is given in real-time by images from arbitrary viewing directions. If infinitely many photographs were taken and pasted together, virtual holography would have been trivial. But, the (infinite) storage requirement would prohibit such an attempt.

  • PDF

A Real-Time Virtual Re-Convergence Hardware Platform

  • Kim, Jae-Gon;Kim, Jong-Hak;Ham, Hun-Ho;Kim, Jueng-Hun;Park, Chan-Oh;Park, Soon-Suk;Cho, Jun-Dong
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.12 no.2
    • /
    • pp.127-138
    • /
    • 2012
  • In this paper, we propose a real-time virtual re-convergence hardware platform especially to reduce the visual fatigue caused by stereoscopy. Our unique idea to reduce visual fatigue is to utilize the virtual re-convergence based on the optimized disparity-map that contains more depth information in the negative disparity area than in the positive area. Our virtual re-convergence hardware platform, which consists of image rectification, disparity estimation, depth post-processing, and virtual view control, is realized in real time with 60 fps on a single Xilinx Virtex-5 FPGA chip.

Single Image-Based 3D Tree and Growth Models Reconstruction

  • Kim, Jaehwan;Jeong, Il-Kwon
    • ETRI Journal
    • /
    • v.36 no.3
    • /
    • pp.450-459
    • /
    • 2014
  • In this paper, we present a new, easy-to-generate system that is capable of creating virtual 3D tree models and simulating a variety of growth processes of a tree from a single, real tree image. We not only construct various tree models with the same trunk through our proposed digital image matting method and skeleton-based abstraction of branches, but we also animate the visual growth of the constructed 3D tree model through usage of the branch age information combined with a scaling factor. To control the simulation of a tree growth process, we consider tree-growing attributes, such as branching orders, branch width, tree size, and branch self-bending effect, at the same time. Other invisible branches and leaves are automatically attached to the tree by employing parametric branch libraries under the conventional procedural assumption of structure having a local self-similarity. Simulations with a real image confirm that our system makes it possible to achieve realistic tree models and growth processes with ease.

Constructing Virtual Environment for Flight Simulators based on Digital Map (지리정보를 이용한 비행 시뮬레이터의 가상환경 구축)

  • 유병헌;한순흥
    • Korean Journal of Computational Design and Engineering
    • /
    • v.9 no.2
    • /
    • pp.148-157
    • /
    • 2004
  • Interactive simulators that simulate mechanical systems are being developed for the purpose of performance evaluation of product design, replacement of physical training, and entertainment game. Use of flight simulator is increasing to reduce risk and cost of physical training, and we need virtual environment which covers large area terrain. We need a method that can reduce development cost and construction time of virtual environment that simulate the real environment. There have been attempts to link GIS or remote sensing field with virtual reality. This paper examines a method that helps to construct virtual environment, and attempts to link geographic information with virtual reality. A construction method of virtual environment based on digital map and satellite image has been studied.