• 제목/요약/키워드: reactive oxygen species

검색결과 2,748건 처리시간 0.036초

Staurosporine에 의해 분화된 망막신경절세포에서 산화 스트레스 유도 세포사멸에 대한 차조기 추출물의 보호 효능 (Protective Effect of Perilla frutescens Extract against Oxidative Stress-Induced Cell Death in a Staurosporine-Differentiated Retinal Ganglion Cell Line)

  • 이보경;최리라;이지인;이두이;장선영;김소희;정이숙
    • 한국식품영양과학회지
    • /
    • 제46권2호
    • /
    • pp.161-168
    • /
    • 2017
  • 본 연구에서는 산화적 스트레스로 유도한 시신경 세포사멸에 대한 차조기 물 추출물(PFE)의 효과를 확인하였다. Staurosporine으로 분화된 ssdRGC-5 세포에 buthionine과 glutamate(B/G)로 산화적 스트레스를 유도하였으며, LDH release assay, MTT reduction assay를 통하여 PFE가 농도 의존적으로 B/G에 의한 세포사멸을 억제함을 관찰하였다. 세포사멸의 기전을 연구하기 위해 caspase 활성, 세포 내 ROS 생성량, 세포고사 관련 단백질 발현을 관찰한 결과, B/G에 의해 증가한 ROS 생성량, caspase 활성을 PFE가 억제하였고, 세포질로 방출된 cytochrome c와 미토콘드리아로 이동한 Bax도 감소함을 확인하였다. 이상의 결과로부터 차조기는 산화적 스트레스로 유도된 시신경 세포사멸 과정에서 항산화 효과와 미토콘드리아성 세포사멸을 완화함으로써 세포 보호 작용을 나타냄을 확인하였다.

PEP-1-HO-1 prevents MPTP-induced degeneration of dopaminergic neurons in a Parkinson's disease mouse model

  • Youn, Jong Kyu;Kim, Dae Won;Kim, Seung Tae;Park, Sung Yeon;Yeo, Eun Ji;Choi, Yeon Joo;Lee, Hae-Ran;Kim, Duk-Soo;Cho, Sung-Woo;Han, Kyu Hyung;Park, Jinseu;Eum, Won Sik;Hwang, Hyun Sook;Choi, Soo Young
    • BMB Reports
    • /
    • 제47권10호
    • /
    • pp.569-574
    • /
    • 2014
  • Heme oxygenase-1 (HO-1) degrades heme to carbon dioxide, biliverdin, and $Fe^{2+}$, which play important roles in various biochemical processes. In this study, we examined the protective function of HO-1 against oxidative stress in SH-SY5Y cells and in a Parkinson's disease mouse model. Western blot and fluorescence microscopy analysis demonstrated that PEP-1-HO-1, fused with a PEP-1 peptide can cross the cellular membranes of human neuroblastoma SH-SY5Y cells. In addition, the transduced PEP-1-HO-1 inhibited generation of reactive oxygen species (ROS) and cell death caused by 1-methyl-4-phenylpyridinium ion ($MPP^+$). In contrast, HO-1, which has no ability to transduce into SH-SY5Y cells, failed to reduce $MPP^+$-induced cellular toxicity and ROS production. Furthermore, intraperitoneal injected PEP-1-HO-1 crossed the blood-brain barrier in mouse brains. In a PD mouse model, PEP-1-HO-1 significantly protected against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced toxicity and dopaminergic neuronal death. Therefore, PEP-1-HO-1 could be a useful agent in treating oxidative stress induced ailments including PD.

Tat-indoleamine 2,3-dioxygenase 1 elicits neuroprotective effects on ischemic injury

  • Park, Jung Hwan;Kim, Dae Won;Shin, Min Jea;Park, Jinseu;Han, Kyu Hyung;Lee, Keun Wook;Park, Jong Kook;Choi, Yeon Joo;Yeo, Hyeon Ji;Yeo, Eun Ji;Sohn, Eun Jeong;Kim, Hyoung-Chun;Shin, Eun-Joo;Cho, Sung-Woo;Kim, Duk-Soo;Cho, Yong-Jun;Eum, Won Sik;Choi, Soo Young
    • BMB Reports
    • /
    • 제53권11호
    • /
    • pp.582-587
    • /
    • 2020
  • It is well known that oxidative stress participates in neuronal cell death caused production of reactive oxygen species (ROS). The increased ROS is a major contributor to the development of ischemic injury. Indoleamine 2,3-dioxygenase 1 (IDO-1) is involved in the kynurenine pathway in tryptophan metabolism and plays a role as an anti-oxidant. However, whether IDO-1 would inhibit hippocampal cell death is poorly known. Therefore, we explored the effects of cell permeable Tat-IDO-1 protein against oxidative stress-induced HT-22 cells and in a cerebral ischemia/reperfusion injury model. Transduced Tat-IDO-1 reduced cell death, ROS production, and DNA fragmentation and inhibited mitogen-activated protein kinases (MAPKs) activation in H2O2 exposed HT-22 cells. In the cerebral ischemia/reperfusion injury model, Tat-IDO-1 transduced into the brain and passing by means of the blood-brain barrier (BBB) significantly prevented hippocampal neuronal cell death. These results suggest that Tat-IDO-1 may present an alternative strategy to improve from the ischemic injury.

Effects of astaxanthin on antioxidant capacity of golden pompano (Trachinotus ovatus) in vivo and in vitro

  • Xie, Jia-jun;Chen, Xu;Niu, Jin;Wang, Jun;Wang, Yun;Liu, Qiang-qiang
    • Fisheries and Aquatic Sciences
    • /
    • 제20권4호
    • /
    • pp.6.1-6.8
    • /
    • 2017
  • The objective of this research was to study the effect of astaxanthin (AST) on growth performance and antioxidant capacity in golden pompano (Trachinotus ovatus) both in vivo and in vitro. In the in vivo study, two diets were formulated with or without astaxanthin supplementation (D1 and D2; 0 and 200 mg/kg) to feed fish for 6 weeks. In the in vitro study, cells from hepatopancreas of golden pompano were isolated and four treatments with or without astaxanthin and $H_2O_2$ supplementation were applied (control group: without both astaxanthin and $H_2O_2$ treated; $H_2O_2$ group: just with $H_2O_2$ treated; $H_2O_2$ + AST group: with both astaxanthin and $H_2O_2$treated; AST group: just with AST treated). Results of the in vivo study showed that weight gain (WG) and special growth rate (SGR) significantly increased with astaxanthin supplemented (P < 0.05). Feed conversion ratio (FCR) of fish fed D2 diet was significantly lower than that of fish fed D1 diet (P < 0.05). Hepatic total antioxidant capacity (T-AOC) and the reduced glutathione (GSH) of golden pompano fed D2 diet were significant higher than those of fish fed D1 diet (P < 0.05). Superoxide dismutase (SOD) was significantly declined as astaxanthin was supplemented (P < 0.05). Results of the in vitro study showed that the cell viability of $H_2O_2$ group was 52.37% compared to the control group, and it was significantly elevated to 84.18% by astaxanthin supplementation ($H_2O_2$ + AST group) (P < 0.05). The total antioxidant capacity (T-AOC) and the reduced glutathione (GSH) of cell were significant decreased by oxidative stress from $H_2O_2$ (P < 0.05), but it could be raised by astaxanthin supplementation ($H_2O_2$ vs $H_2O_2$ + AST), and the malondialdehyde (MDA) was significant higher in $H_2O_2$ group (P < 0.05) and astaxanthin supplementation could alleviate the cells from lipid peroxidation injury. In conclusion, dietary astaxanthin supplementation can improve the growth performance of golden pompano. Moreover, astaxanthin can improve the golden pompano hepatic antioxidant capacity both in vivo and in vitro study by eliminating the reactive oxygen species.

PEP-1-FK506BP inhibits alkali burn-induced corneal inflammation on the rat model of corneal alkali injury

  • Kim, Dae Won;Lee, Sung Ho;Shin, Min Jea;Kim, Kibom;Ku, Sae Kwang;Youn, Jong Kyu;Cho, Su Bin;Park, Jung Hwan;Lee, Chi Hern;Son, Ora;Sohn, Eun Jeong;Cho, Sung-Woo;Park, Jong Hoon;Kim, Hyun Ah;Han, Kyu Hyung;Park, Jinseu;Eum, Won Sik;Choi, Soo Young
    • BMB Reports
    • /
    • 제48권11호
    • /
    • pp.618-623
    • /
    • 2015
  • FK506 binding protein 12 (FK506BP) is a small peptide with a single FK506BP domain that is involved in suppression of immune response and reactive oxygen species. FK506BP has emerged as a potential drug target for several inflammatory diseases. Here, we examined the protective effects of directly applied cell permeable FK506BP (PEP-1-FK506BP) on corneal alkali burn injury (CAI). In the cornea, there was a significant decrease in the number of cells expressing pro-inflammation, apoptotic, and angiogenic factors such as TNF-α, COX-2, and VEGF. Both corneal opacity and corneal neovascularization (CNV) were significantly decreased in the PEP-1-FK506BP treated group. Our results showed that PEP-1-FK506BP can significantly inhibit alkali burn-induced corneal inflammation in rats, possibly by accelerating corneal wound healing and by reducing the production of angiogenic factors and inflammatory cytokines. These results suggest that PEP-1-FK506BP may be a potential therapeutic agent for CAI.

PEP-1-GSTpi protein enhanced hippocampal neuronal cell survival after oxidative damage

  • Sohn, Eun Jeong;Shin, Min Jea;Kim, Dae Won;Son, Ora;Jo, Hyo Sang;Cho, Su Bin;Park, Jung Hwan;Lee, Chi Hern;Yeo, Eun Ji;Choi, Yeon Joo;Yu, Yeon Hee;Kim, Duk-Soo;Cho, Sung-Woo;Kwon, Oh Shin;Cho, Yong-Jun;Park, Jinseu;Eum, Won Sik;Choi, Soo Young
    • BMB Reports
    • /
    • 제49권7호
    • /
    • pp.382-387
    • /
    • 2016
  • Reactive oxygen species generated under oxidative stress are involved in neuronal diseases, including ischemia. Glutathione S-transferase pi (GSTpi) is a member of the GST family and is known to play important roles in cell survival. We investigated the effect of GSTpi against oxidative stress-induced hippocampal HT-22 cell death, and its effects in an animal model of ischemic injury, using a cell-permeable PEP-1-GSTpi protein. PEP-1-GSTpi was transduced into HT-22 cells and significantly protected against H2O2-treated cell death by reducing the intracellular toxicity and regulating the signal pathways, including MAPK, Akt, Bax, and Bcl-2. PEP-1-GSTpi transduced into the hippocampus in animal brains, and markedly protected against neuronal cell death in an ischemic injury animal model. These results indicate that PEP-1-GSTpi acts as a regulator or an antioxidant to protect against oxidative stress-induced cell death. Our study suggests that PEP-1-GSTpi may have potential as a therapeutic agent for the treatment of ischemia and a variety of oxidative stress-related neuronal diseases.

진무탕(眞武湯)이 $H_2O_2$로 유도된 C6 Glial 세포사에 미치는 영향 (Protective Effect of Jinmu-tang on $H_2O_2$-induced Cell Death in C6 Glial Cells)

  • 최정훈;신용진;하예진;조문영;유주연;이숭인;신선호
    • 대한한방내과학회지
    • /
    • 제33권3호
    • /
    • pp.272-283
    • /
    • 2012
  • Objectives : The purpose of this study was to investigate the mechanism of protective effect of Jinmu-tang (JMT, Zhenwu-tang) extract on $H_2O_2$-induced cell death in C6 glial cells. Methods : Cultured C6 glial cells of white mice were pretreated with JMT extract and exposed to $H_2O_2$ for inducing cell death. We measure the cell viability by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay and investigate the cell morphology using a light microscope after crystal violet (CV) staining. Reactive oxygen species (ROS) formation was analyzed using a flow cytometer and a fluorescent microscope after staining with 2'7'-dichlorofluorescein diacetate (DCF-DA). DNA fragmentation was analyzed using a flow cytometer after propidium iodide (PI) staining and nuclei morphology was investigated using a fluorescent microscope after 2-[4-amidinophenyl]-6-indo-lecarbamidine dihydrochloride (DAPI) staining. We analyzed expression of Bax, processing of procaspase-3 and poly (ADP-ribose) polymerase (PARP), and activation of nuclear factor-${\kappa}B$ (NF-${\kappa}B$) by western blot method. Tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$) secretion was analyzed using Quantikine kit. Results : We determined the elevated cell viability by JMT extract on $H_2O_2$-induced C6 glial cell death. ROS formation, DNA fragmentation, $I{\kappa}B{\alpha}$ phosphorylation, NF-${\kappa}B$ activation, and secretion of TNF-${\alpha}$ induced by $H_2O_2$ are inhibited by JMT extract pre-treatment. JMT extract inhibits Bax expression, processing of caspase-3 and PARP that are critical biochemical markers of apoptotic cell death. Conclusions : These results suggest that JMT extract has a protective effect on $H_2O_2$-induced C6 glial cell death in various pathways.

Vaccinium bracteatum Thunb. Exerts Anti-Inflammatory Activity by Inhibiting NF-κB Activation in BV-2 Microglial Cells

  • Kwon, Seung-Hwan;Ma, Shi-Xun;Ko, Yong-Hyun;Seo, Jee-Yeon;Lee, Bo-Ram;Lee, Taek Hwan;Kim, Sun Yeou;Lee, Seok-Yong;Jang, Choon-Gon
    • Biomolecules & Therapeutics
    • /
    • 제24권5호
    • /
    • pp.543-551
    • /
    • 2016
  • This study was designed to evaluate the pharmacological effects of Vaccinium bracteatum Thunb. methanol extract (VBME) on microglial activation and to identify the underlying mechanisms of action of these effects. The anti-inflammatory properties of VBME were studied using lipopolysaccharide (LPS)-stimulated BV-2 microglial cells. We measured the production of nitric oxide (NO), inducible NO synthase (iNOS), cyclooxygenase (COX)-2, prostaglandin $E_2$ ($PGE_2$), tumor necrosis factor-alpha (TNF-${\alpha}$), interleukin-1 beta (IL-$1{\beta}$), and interleukin-6 (IL-6) as inflammatory parameters. We also examined the effect of VBME on intracellular reactive oxygen species (ROS) production and the activity of nuclear factor-kappa B p65 (NF-${\kappa}B$ p65). VBME significantly inhibited LPS-induced production of NO and $PGE_2$ and LPS-mediated upregulation of iNOS and COX-2 expression in a dose-dependent manner; importantly, VBME was not cytotoxic. VBME also significantly reduced the generation of the pro-inflammatory cytokines TNF-${\alpha}$, IL-$1{\beta}$, and IL-6. In addition, VBME significantly dampened intracellular ROS production and suppressed NF-${\kappa}B$ p65 translocation by blocking $I{\kappa}B-{\alpha}$ phosphorylation and degradation in LPS-stimulated BV2 cells. Our findings indicate that VBME inhibits the production of inflammatory mediators in BV-2 microglial cells by suppressing NF-${\kappa}B$ signaling. Thus, VBME may be useful in the treatment of neurodegenerative diseases due to its ability to inhibit inflammatory mediator production in activated BV-2 microglial cells.

애기장대에서 액포막 존재 Ca2+-ATPase11 (ACA11) 형질전환제의 세포사멸 표현형 분석 (Cell death phenotype of vacuole Ca2+-ATPase11 (ACA11) transgenic plant in Arabidopsis)

  • 이상민;호앙티마이한;김경은;정우식
    • Journal of Plant Biotechnology
    • /
    • 제36권1호
    • /
    • pp.59-63
    • /
    • 2009
  • 작물 스트레스 내성 연구의 궁극적인 과제는 가진 형질을 극대화하여 생산량을 증대하고 외부의 환경적인 요소로부터 피해를 최소화하는 것이다. 따라서 작물의 다양한 외부 환경적 스트레스에 대응하기 위한 연구들이 진행되고 있다. 특히 세포 내 신호전달 과정의 이차매개체인 칼슘에 대한 다양한 연구들이 진행되고 있지만 아직까지 많은 부분이 밝혀져 있지 않다. 본 연구는 모델식물인 애기장대를 이용하여 세포 내 칼슘의 주요 저장소인 액포로 칼슘을 수송하는 역할을 수행하는 $Ca^{2+}$-ATPase의 형질전환 식물을 이용하여 세포 내 칼슘의 신호전달과 식물 생물학적 기능을 알아보았다. ACA11-GFP 유전자가 형질전환된 식물에서 흥미롭게도 ACA11 유전자가 발현 침묵됨으로써 세포 내 칼슘농도 항상성 조절과 신호전달 과정에 문제가 발생하고 세포질 내 활성산소가 증가되어 결국 형질전환체의 잎에서 HR과 같은 세포사멸을 유발한다는 것을 제시하였다.

벼도열병균에서의 methionine sulfoxide reductase B 유전자의 분자적 특성 (Identification and Molecular Characterization of Methionine Sulfoxide Reductase B Gene in Rice Blast Fungus, Magnaporthe oryzae)

  • 김정환;김진수;정미연;최우봉
    • 생명과학회지
    • /
    • 제19권3호
    • /
    • pp.343-348
    • /
    • 2009
  • 벼도열병균은 벼의 주요 병해인 벼도열병의 원인균이다. 식물병원균의 침입 시 식물체로부터 발생하는 ROS는 식물의 방어기작으로 중요하며, 특히 아미노산의 하나인 methionine은 ROS에 의해 산화되어 methionine sulfoxide로 변화될 수 있다. 식물병원균은 식물체로 부터의 ROS에 의한 산화반응을 회피하기 위해 methionine sulfoxide reductase B (MSRB)와 같은 항산화 효소를 가지는데 본 연구에서는 벼도열병균에서의 MSRB 유전자를 동정하고 분자적 특성을 살펴보았다. MSRB 유전자는 벼도열병균의 게놈 상에 단일 유전자로 존재하며 과산화수소 처리에 의해 유전자발현이 다소 증가하는 경향을 보였다. 이러한 결과로 MSRB 유전자는 벼도열병균의 항산화 기작에 관여할 가능성이 높다고 판단된다.