• Title/Summary/Keyword: reactive monomer

Search Result 52, Processing Time 0.021 seconds

Preparation of Mg(OH)2-Melamine Core-Shell Particle and Its Flame Retardant Property (멜라민이 코팅된 수산화마그네슘 입자의 제조와 그 복합입자의 난연특성)

  • Lim, Hyung-Mi;Yoon, Joon-Ho;Jeong, Sang-Ok;Lee, Dong-Jin;Lee, Seung-Ho
    • Korean Journal of Materials Research
    • /
    • v.20 no.12
    • /
    • pp.691-698
    • /
    • 2010
  • Magnesium hydroxide-melamine core-shell particles were prepared through the coating of melamine monomer on the surface of magnesium hydroxide in the presence of phosphoric acid. The melamine monomer was dissolved in hot water but recrystallized on the surface of magnesium hydroxide by quenching to room temperature in the presence of phosphoric acid. The core-shell particle was applied to low-density polyethylene/ ethylene vinyl acetate (LDPE/EVA) resin by melt-compounding at $180^{\circ}C$ as flame retardant. The effect of magnesium hydroxide and melamine content has been studied on the flame retardancy of the core-shell particles in LDPE/EVA resin according to the preparation process and purity of magnesium hydroxide. Magnesium hydroxide prepared with sodium hydroxide rather than with ammonia solution revealed higher flame retardancy in core-shell particles with LDPE/EVA resin. At 50 wt% loading of flame retardant, core-shell particles revealed higher flame retardancy compared to that of the exclusive magnesium hydroxide in LDPE/EVA composite, and it was possible to satisfy the V0 grade in the UL-94 vertical test. The synergistic flame retardant effect of magnesium hydroxide and melamine core-shell particles was explained as being due to the endothermic decomposition of magnesium hydroxide and melamine, which was followed by the evolution of water from the magnesium hydroxide and porous char formation due to reactive nitrogen compounds, and carbon dioxide generated from melamine.

Study on Electro-optic Characteristics of the Optically Compensated Bend Liquid Crystal Display Using UV Curable Monomer (광경화성 단분자를 이용한 광학 보상 휨 액정 디스플레이의 전기광학 특성연구)

  • Lim, Young-Jin;Jeon, Eun-Jeong;Kwon, Dong-Won;Kim, Jeong-Hwan;Jeong, Kwang-Un;Lee, Myong-Hoon;Lee, Seung-Hee
    • Polymer(Korea)
    • /
    • v.33 no.5
    • /
    • pp.496-500
    • /
    • 2009
  • Optically compensated bend liquid crystal display (OCB-LCD) has many application fields owing to its fast response time and wide viewing angle. However, in order to operate the OCB-LCD in bend state, this device needs quick transitions from the initial splay state to bend state. Unlike conventional approach using transient high voltage for the transition, the OCB-LCD with high surface tilt angle, which was achieved by polymerization of UV curable reactive mesogen monomer under certain voltage, was manufactured and the cell showed bend state initially. Electro-optic and electrical characteristics of the cell were analyzed. The cell shows a fast response time owing to high surface pretilt angle and very low residual DC less than 0.1 V although another polymer layer is formed above polymer alignment layers.

Curing and Coating Properties of Photo-Curable Self-Photoinitiating Acrylate (광경화형 자가광개시 아크릴레이트의 경화특성 및 도막물성)

  • Han, A-Ram;Hong, Jin-Who;Kim, Hyun-Kyoung
    • Journal of Adhesion and Interface
    • /
    • v.15 no.1
    • /
    • pp.22-30
    • /
    • 2014
  • Self-photoinitiating acrylate (SPIA) which can undergo self-initiation under UV irradiation was synthesized by a Michael addition in the presence of a base catalyst. The SPIA polymerizations were investigated by photo-differential scanning calorimeter (photo-DSC) and surface physical properties such as pendulum hardness and pencil hardness. The results showed that the SPIA can cure upon UV irradiation by itself without a photoinitiator. But we found out that both the curing rate and the conversion were too low for the self-curing reaction of SPIA. In order to improve the SPIA curing properties, we introduced the SPIA/cationic hybrid system and observed the effects of the addition of commercial free radical type monomer and photoinitiator on the curing behaviors. SPIA/cationic hybrid system was the best suitable to improve the SPIA curing properties. The kinetic analysis indicated that the cationic monomer and photoinitiator apparently accelerated the cure reaction and rate of the hybrid SPIA system, mostly due to the synergistic effect of cationic monomer and photoinitiator increasing the mobility of active species and the generation of reactive species (free radical, cation) during the photopolymerization process. The physical properties showed that, unlike typical free radical system, the hybrid systems did not show oxygen inhibition effect because of cationic reaction on the coating surface.

Preparation of MA-PLA Using Radical Initiator and Miscibility Improvement of PLA/PA11 Blends (라디칼 개시제를 이용한 MA-PLA 제조 및 바이오플라스틱 PLA/PA11 블렌드의 상용성 개선)

  • Lee, Jong-Eun;Kim, Han-Eol;Nam, Byeong-Uk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.4
    • /
    • pp.76-85
    • /
    • 2019
  • Recently, various investigation of vegetable oil which is extracted from natural resources is being progressed because of its low cost and environmental aspect. However, double bonds in vegetable oil should be substituted to other high reactive functional group due to its low reactivity for synthesizing bio-polymeric materials. ${\alpha}$-eleostearic acid, which is consist of conjugated triene, is the main component of tung oil, and the conjugated triene allows tung oil to have higher reactivity than other vegetable oil. In this study, tung oil is copolymerized with styrene and divinylbenzene to make thermoset resin without any substitution of functional group. Thermal and mechanical properties are measured to investigate the effects of the composition of each monomer on the synthesized thermoset resin. The result shows that the products have only one Tg, which means the synthesized thermoset resins are homogeneous in molecular level. Mechanical properties show that tung oil act as soft segment in the copolymer and make more elastic product. On the other hand, divinylbenzene acts as hard segment and makes more brittle product.

Cloning, Purification, and Characterization of Recombinant Human Extracellular Superoxide Dismutase in SF9 Insect Cells

  • Shrestha, Pravesh;Yun, Ji-Hye;Kim, Woo Taek;Kim, Tae-Yoon;Lee, Weontae
    • Molecules and Cells
    • /
    • v.39 no.3
    • /
    • pp.242-249
    • /
    • 2016
  • A balance between production and degradation of reactive oxygen species (ROS) is critical for maintaining cellular homeostasis. Increased levels of ROS during oxidative stress are associated with disease conditions. Antioxidant enzymes, such as extracellular superoxide dismutase (EC-SOD), in the extracellular matrix (ECM) neutralize the toxicity of superoxide. Recent studies have emphasized the importance of EC-SOD in protecting the brain, lungs, and other tissues from oxidative stress. Therefore, EC-SOD would be an excellent therapeutic drug for treatment of diseases caused by oxidative stress. We cloned both the full length (residues 1-240) and truncated (residues 19-240) forms of human EC-SOD (hEC-SOD) into the donor plasmid pFastBacHTb. After transposition, the bacmid was transfected into the Sf9-baculovirus expression system and the expressed hEC-SOD purified using FLAG-tag. Western blot analysis revealed that hEC-SOD is present both as a monomer (33 kDa) and a dimer (66 kDa), as detected by the FLAG antibody. A water-soluble tetrazolium (WST-1) assay showed that both full length and truncated hEC-SOD proteins were enzymatically active. We showed that a potent superoxide dismutase inhibitor, diethyldithiocarbamate (DDC), inhibits hEC-SOD activity.

Application of Pervaporation Membrane Process in Petrochemical Industry (석유화학공업에서의 투과증발막의 응용)

  • Nam, Sang-Yong
    • Membrane Journal
    • /
    • v.17 no.1
    • /
    • pp.1-13
    • /
    • 2007
  • Pervaporation process using membrane is newly emerging energy saying and cost effect process instead of distillation process. Especially, in pertrochemical industry, pervaporation process is a strong candidate to substitute the conventional energy consuming processes because that petrochemical industry has much energy consuming separation processes, many azeotrope mixtures to separate and needs to compact space to install new process units. Aromatic/aliphatic separation including benzene/cyclohexane mixture, olefin/paraffin separation, xylene isomer separation, reactive monomer recovery and sulfur compound removal from gasoline have been inversitigated for the application of pervaporation membrane process by many researchers and are under commercializing.

Effect of Vinylic Monomers on Toughness of Unsaturated Polyester (불포화 폴리에스테르 수지의 강인성에 비닐계 단량체가 미치는 효과)

  • 이동호;정용균;최관영;김호겸;민경은;서관호;임정철;전일련
    • Polymer(Korea)
    • /
    • v.25 no.3
    • /
    • pp.375-384
    • /
    • 2001
  • We investigated the change of mechanical properties of UP using mixture of SM with VAc or MA that have low glass transition temperature when polymerized instead of SM only for diluents of UP. In case of using mixture of SM/MA, it was elucidated that the toughness of UP was more improved than using SM only. But in case of SM/VAc, it was observed that the content of mixture could not affect on toughness. It was concluded that these results are caused by the effect of each diluents mixtures on stress-relaxation due to phase separation and on decrease glass transition temperature of UP is quite different from each other.

  • PDF

Holographic Polymer-Dispersed Liquid Crystals and Polymeric Photonic Crystals Formed by Holographic Photolithography

  • Kyu Thein;Meng Scott;Duran Hatice;Nanjundiah Kumar;Yandek Gregory R.
    • Macromolecular Research
    • /
    • v.14 no.2
    • /
    • pp.155-165
    • /
    • 2006
  • The present article describes the experimental and theoretical observations on the formation of holographic, polymer-dispersed, liquid crystals and electrically switchable, photonic crystals. A phase diagram of the starting mixture of nematic liquid crystal and photo-reactive triacrylate monomer was established by means of differential scanning calorimetry (DSC) and cloud point measurement. Photolithographic patterns were imprinted on the starting mixture of LC/triacrylate via multi-beam interference. A similar study was extended to a dendrimer/photocurative mixture as well as to a single component system (tetra-acrylate). Theoretical modeling and numerical simulation were carried out based on the combination of Flory-Huggins free energy of mixing and Maier-Saupe free energy of nematic ordering. The combined free energy densities were incorporated into the time-dependent Ginzburg-Landau (Model C) equations coupled with the photopolymerization rate equation to elucidate the spatio-temporal structure growth. The 2-D photonic structures thus simulated were consistent with the experimental observations. Furthermore, 3-D simulation was performed to guide the fabrication of assorted photonic crystals under various beam-geometries. Electro-optical performance such as diffraction efficiency was evaluated during the pattern photopolymerization process and also as a function of driving voltage.

Effect of plasma polymerized film on fouling of heat exchangers

  • Kim, Ki-Hwan;Park, Sung-Chang;doo-Jin choi;Jung, Hyung-Jin;Ha, Sam-Chul;Kim, Chul-Hwan;Koh, Seok-Keun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.160-160
    • /
    • 1999
  • To reduce the fouling of heat exchangers, the plasma polymerized films was coated on the heat exchangers, and an effect of plasma polymerized film on fouling of heat exchangers was investigated. Monomer and reactive gases were used as the precursors of plasma polymerization. Plasma polymerized films were deposited with process parameters of pressure, power, and ratio of gases. Plasma polymerized films could be served as functional layers of good wettability and high resistance to corrosion. Wettability of plasma polymerized film could be controlled by the ratio change gas mixture. Hydrophilicity of plasma polymerized films on heat exchanger in air conditioner can provide improvement in performance of heat exchanger which results from good water drainage, decrease of pressure drop. DC-plasma polymerized films improve resistance to corrosion whcih is related to deposit formation in heat exchangers. The difference in the build up of fouling deposits between bare substrate and plasma polymerized substrate was investigated by scanning electron microscopy (SEM). An effect of plasma polymerized film on fouling of heat exchangers was discussed in terms of surface properties such as wettability, surface chemical state.

  • PDF

Monitoring photo-polymerization reaction using near-IR spectroscopic technique (Near-IR 분광법을 이용한 광 경화 중합반응 관찰)

  • Chung, Soo-Chung;Hong, Jin-Who;Yu, Jeong-A
    • Analytical Science and Technology
    • /
    • v.15 no.4
    • /
    • pp.341-345
    • /
    • 2002
  • The extent of UV-curing photo-polymerization reaction was monitored by near-IR spectroscopic method. Acrylates containing quaternary ammonium salts and Darocur 1173 were used as reactive monomer and a photo initiator, respectively. The extent of photo-polymerization reaction was obtained from the conversion ratio of acrylate double bond calculated from the intensities of measured bands at 1615 nm and at 2105 nm. Near-IR spectroscopic methods can be an useful tool for the monitoring of the progress of photo-polymerization.