Browse > Article
http://dx.doi.org/10.5762/KAIS.2019.20.4.76

Preparation of MA-PLA Using Radical Initiator and Miscibility Improvement of PLA/PA11 Blends  

Lee, Jong-Eun (Department of Applied Chemical Engineering, School of Energy.Materials.Chemical Engineering, Korea University of Technology and Education)
Kim, Han-Eol (Department of Applied Chemical Engineering, School of Energy.Materials.Chemical Engineering, Korea University of Technology and Education)
Nam, Byeong-Uk (Department of Applied Chemical Engineering, School of Energy.Materials.Chemical Engineering, Korea University of Technology and Education)
Publication Information
Journal of the Korea Academia-Industrial cooperation Society / v.20, no.4, 2019 , pp. 76-85 More about this Journal
Abstract
Recently, various investigation of vegetable oil which is extracted from natural resources is being progressed because of its low cost and environmental aspect. However, double bonds in vegetable oil should be substituted to other high reactive functional group due to its low reactivity for synthesizing bio-polymeric materials. ${\alpha}$-eleostearic acid, which is consist of conjugated triene, is the main component of tung oil, and the conjugated triene allows tung oil to have higher reactivity than other vegetable oil. In this study, tung oil is copolymerized with styrene and divinylbenzene to make thermoset resin without any substitution of functional group. Thermal and mechanical properties are measured to investigate the effects of the composition of each monomer on the synthesized thermoset resin. The result shows that the products have only one Tg, which means the synthesized thermoset resins are homogeneous in molecular level. Mechanical properties show that tung oil act as soft segment in the copolymer and make more elastic product. On the other hand, divinylbenzene acts as hard segment and makes more brittle product.
Keywords
Polylactic Acid; Polyamide 11; Maleic Anhydride; Compatibilizer; Impact Modifier;
Citations & Related Records
연도 인용수 순위
  • Reference
1 L. Xiao, Y. Mai, F. He, L. Yu, L. Zhang, H. Tang and G. Yang, "Bio-based green composites with high performance from poly (lactic acid) and surface-modified microcrystalline cellulose", Journal of Materials Chemistry, Vol.22, No.31 p. 15732-15739, 2012. DOI : https://doi.org/10.1039/c2jm32373g   DOI
2 K. Formela, L. Zedler, A. Hejna and A. Tercjak, "Reactive extrusion of bio-based polymer blends and composites-Current trends and future developments", Express Polymer Letters, Vol.12, No.1 p. 24-57, 2018. DOI : https://doi.org/10.3144/expresspolymlett.2018.4   DOI
3 E. T. Vink, K. R. Rabago, D. A. Glassner and P. R. Grubber, "Applications of life cycle assessment to NatureWorksTM polylactide (PLA) production", Polymer Degradation and stability, Vol.80, No.3 p. 403-419, 2003. DOI : https://doi.org/10.1016/s0141-3910(02)00372-5   DOI
4 J. Lunt, "Large-scale production, properties and commercial applications of polylactic acid polymers", Polymer degradation and stability, Vol.59, No.1 p. 145-152, 1998. DOI : https://doi.org/10.1016/s0141-3910(97)00148-1   DOI
5 D. S. Jeong, S. H. Han and Y. C. Kim, "Effects of Heat Treatment on the Physical Properties of PP Composites with Bamboo Fiber Treated by Silane", POLYMER-KOREA, Vol.42, No.6 p. 960-966, 2018. DOI : https://doi.org/10.7317/pk.2018.42.6.960   DOI
6 M. Avella, G. Bogoeva-Gaceva, A. Buzarovska, M. E. Errico, G. Gentile and A. Grozdanov, "Poly (lactic acid)-based biocomposites reinforced with kenaf fibers", Journal of Applied Polymer Science, Vol.108, No.6 p. 3542-3551, 2008. DOI : https://doi.org/10.1002/app.28004   DOI
7 S. W. Hwang, S. S. Lee, C. K. Lee, J. Y. Lee, J. K. Shim, S. E. Selke, H. Soto-Valdez, L. Matuana, M. Rubino and R. Auras, "Grafting of maleic anhydride on poly (L-lactic acid). Effects on physical and mechanical properties", Polymer Testing, Vol.31, No.2 p. 333-344, 2012. DOI : https://doi.org/10.1016/j.polymertesting.2011.12.005   DOI
8 S. Detyothin, S. E. Selke, R. Narayan, M. Rubino and R. Auras, "Reactive functionalization of poly (lactic acid), PLA: Effects of the reactive modifier, initiator and processing conditions on the final grafted maleic anhydride content and molecular weight of PLA", Polymer degradation and stability, Vol.98, No.12 p. 2697-2708, 2013. DOI : https://doi.org/10.1016/j.polymdegradstab.2013.10.001   DOI
9 F. Hassouna, J. M. Raquez, F. Addiego, V. Toniazzo, P. Dubois and D. Ruch, "New development on plasticized poly (lactide): chemical grafting of citrate on PLA by reactive extrusion", European Polymer Journal, Vol.48, No.2 p. 404-415, 2012. DOI : https://doi.org/10.1016/j.eurpolymj.2011.12.001   DOI
10 V. H. Orozco, J. Palacio, J. Sierra and B. L. Lopez, "Increased covalent conjugation of a model antigen to poly (lactic acid)-g-maleic anhydride nanoparticles compared to bare poly (lactic acid) nanoparticles", Colloid and Polymer Science, Vol.291, No.12 p. 2775-2781, 2013. DOI : https://doi.org/10.1007/s00396-013-3023-9   DOI
11 M. Sclavons, V. Carlier, B. De Roover, P. Franquinet, J. Devaux and R. Legras, "The anhydride content of some commercial PP-g-MA: FTIR and titration", Journal of applied polymer science, Vol.62, No.8 p. 1205-1210, 1996. DOI : https://doi.org/10.1002/(sici)1097-4628(19961121)62:8<1205::aid-app10>3.3.co;2-j   DOI
12 M. A. Ghalia and Y. Dahman, "Biodegradable poly (lactic acid)-based scaffolds: synthesis and biomedical applications", Journal of Polymer Research, Vol. 24, No.5 p. 24-74, 2017. DOI : https://doi.org/10.1007/s10965-017-1227-2   DOI
13 M. E. Gonzalez-Lopez, J. R. Robledo-Ortiz, R. Manriquez-Gonzalez, J. A. Silva-Guzman and A. A. Perez-Fonseca, " Polylactic acid functionalization with maleic anhydride and its use as coupling agent in natural fiber biocomposites: a review", Composite Interfaces, Vol.25, No.5 p. 515-538, 2018. DOI : https://doi.org/10.1080/09276440.2018.1439622   DOI
14 J. Duvall, C. Sellitti, C. Myers, A. Hiltner and E. Baer, "Effect of compatibilization on the properties of polypropylene/polyamide-66 (75/25 wt/wt) blends", Journal of applied polymer science, Vol.52, No.2 p. 195-206, 1994. DOI : https://doi.org/10.1002/app.1994.070520207   DOI
15 C. Jiang, S. Filippi and P. Magagnini, "Reactive compatibilizer precursors for LDPE/PA6 blends. II: maleic anhydride grafted polyethylenes", Polymer, Vol.44, No.8 p. 2411-2422, 2003. DOI : https://doi.org/10.1016/s0032-3861(03)00133-2   DOI
16 M. Khemakhem, K. Lamnawar, A. Maazouz and M. Jaziri, "Biocomposites based on polylactic acid and olive solid waste fillers: Effect of two compatibilization approaches on the physicochemical, rheological, and mechanical properties", Polymer Composites, Vol.39, No.1, p. 152-163, 2018. DOI : https://doi.org/10.1002/pc.24094   DOI
17 H. X. Wu, S. Q. Jiang,h. R. Cui and J. Y. Cui, "Maleic Anhydride Grafted Modified PA6 as Compatilizer Preparation of PLA/PA6 Blend", Applied Mechanics & Materials, Vol.590, No.1 p. 284-288, 2014. DOI : https://doi.org/10.4028/www.scientific.net/amm.590.284   DOI
18 B. U. Nam and B. S. Lee, "Toughening of PLA stereocomplex by impact modifiers", Journal of the Korea Academia-Industrial Cooperation Society, Vol.13, No.2 p. 919-925, 2012. DOI : https://doi.org/10.5762/kais.2012.13.2.919   DOI
19 B. R. Kim, S. K. Jeoung, Y. K. Ko, J. U. Ha, Y. W. Kim, S. Y. Lee and P. C. Lee, "Study of Dimensional Changes depending on Moisture Sorption of Change in Polymeric Materials for Automotive Exterior Lamp", POLYMER- KOREA, Vol.42, No.6 p. 1030-1034, 2018. DOI : https://doi.org/10.7317/pk.2018.42.6.1030   DOI