Holographic Polymer-Dispersed Liquid Crystals and Polymeric Photonic Crystals Formed by Holographic Photolithography

  • Kyu Thein (Department of Polymer Engineering, University of Akron) ;
  • Meng Scott (Department of Polymer Engineering, University of Akron) ;
  • Duran Hatice (Department of Polymer Engineering, University of Akron) ;
  • Nanjundiah Kumar (Department of Polymer Engineering, University of Akron) ;
  • Yandek Gregory R. (Department of Polymer Engineering, University of Akron)
  • Published : 2006.04.01

Abstract

The present article describes the experimental and theoretical observations on the formation of holographic, polymer-dispersed, liquid crystals and electrically switchable, photonic crystals. A phase diagram of the starting mixture of nematic liquid crystal and photo-reactive triacrylate monomer was established by means of differential scanning calorimetry (DSC) and cloud point measurement. Photolithographic patterns were imprinted on the starting mixture of LC/triacrylate via multi-beam interference. A similar study was extended to a dendrimer/photocurative mixture as well as to a single component system (tetra-acrylate). Theoretical modeling and numerical simulation were carried out based on the combination of Flory-Huggins free energy of mixing and Maier-Saupe free energy of nematic ordering. The combined free energy densities were incorporated into the time-dependent Ginzburg-Landau (Model C) equations coupled with the photopolymerization rate equation to elucidate the spatio-temporal structure growth. The 2-D photonic structures thus simulated were consistent with the experimental observations. Furthermore, 3-D simulation was performed to guide the fabrication of assorted photonic crystals under various beam-geometries. Electro-optical performance such as diffraction efficiency was evaluated during the pattern photopolymerization process and also as a function of driving voltage.

Keywords

References

  1. E. Yablonovitch, Phys. Rev. Lett., 58, 2059 (1987) https://doi.org/10.1103/PhysRevLett.58.2059
  2. S. John, Phys. Rev. Lett., 58, 2486 (1987) https://doi.org/10.1103/PhysRevLett.58.2486
  3. J. D. Joannopoulous, R. D. Meade, and J. N. Winn, Photonic Crystals, Princeton University Press, New York, 1995
  4. S. Y. Lin, E. Chow, V. Hietala, P. R. Villeneuve, and J. D. Joannopoulous, Science, 282, 274 (1998) https://doi.org/10.1126/science.282.5387.274
  5. M. Campbell, D. N. Sharp, M. T. Harrision, R. G. Denning, and A. J. Turberfield, Nature, 404, 53 (2000) https://doi.org/10.1038/35003523
  6. V. P. Tondiglia, L. V. Natarajan, R. L. Sutherland, D. Tomlin, and T. J. Bunning, Adv. Mater., 14, 187 (2002) https://doi.org/10.1002/1521-4095(20020205)14:3<187::AID-ADMA187>3.0.CO;2-O
  7. M. Mucha, Prog. Polym. Sci., 28, 837 (2003) https://doi.org/10.1016/S0079-6700(02)00117-X
  8. T. J. Bunning, L. V. Natarajan, V. P. Tondiglia, G. Dougherty, and R. L. Sutherland, J. Polym. Sci.; Part B: Polym. Phys., 35, 2825 (1997) https://doi.org/10.1002/(SICI)1099-0488(199712)35:17<2825::AID-POLB7>3.0.CO;2-P
  9. T. J. Bunning, L. V. Natarajan, V. P. Tondiglia, and R. L. Sutherland, Annu. Rev. Mater. Sci., 30, 83 (2000) https://doi.org/10.1146/annurev.matsci.30.1.83
  10. M. D. Sarkar, N. L. Gill, J. B. Whitehead, and G. P. Crawford, Macromolecules, 36, 630 (2003) https://doi.org/10.1021/ma020726a
  11. T. Kyu, N. Domasius, and H.-W. Chiu, Phys. Rev. E, 63, 061802 (2001) https://doi.org/10.1103/PhysRevE.63.061802
  12. R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, and T. J. Bunning, J. Appl. Phys., 96, 951 (2004) https://doi.org/10.1063/1.1762713
  13. S. Meng, T. Kyu, L. V. Natarajan, V. P. Tondiglia, R. L. Sutherland, and T. J. Bunning, Macromolecules, 38, 4844 (2005) https://doi.org/10.1021/ma0480906
  14. P. J. Flory, J. Chem. Phys., 10, 51 (1942) https://doi.org/10.1063/1.1723621
  15. M. L. Huggins, J. Phys. Chem., 46, 151 (1942) https://doi.org/10.1021/j150415a018
  16. W. Maier and A. Z. Saupe, Naturforsch., 13a, 564 (1958)
  17. J. D. Gunton, M. San Miguel, and P. S. Sahni, Phase Transitions and Critical Phenomena; Academic Press, New York, 1983
  18. S. Meng, K. Nanjundiah, T. Kyu, L. V. Natarajan, V. P. Tondiglia, and T. J. Bunning, Macromolecules, 37, 3792 (2004) https://doi.org/10.1021/ma0356055
  19. C. Shen and T. Kyu, J. Chem. Phys., 102, 556 (1995) https://doi.org/10.1063/1.469435
  20. K. Nanjundiah, Master's Thesis, The University of Akron, 2003
  21. K. Dusek, J. Polym. Sci.; Part C: Polym. Symp., 16, 1289 (1967); K. Dusek and W. Prins, Adv. Polym. Sci., 6, 1 (1969) https://doi.org/10.1007/BFb0051042
  22. H. M. J Boots, C. Kloosterboer, C. Serbutoviez, and F. J. Touwslager, Macromolecules, 29, 7683 (1996) https://doi.org/10.1021/ma960292h
  23. P. J. Flory and B. Erman, Macromolecules, 15, 800 (1982) https://doi.org/10.1021/ma00231a022
  24. G. R. Yandek, Ph. D. Dissertation, The University of Akron, 2005
  25. R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, and T. J. Bunning, Appl. Phys. Lett., 79, 1420 (2001) https://doi.org/10.1063/1.1399303