Browse > Article
http://dx.doi.org/10.14348/molcells.2016.2271

Cloning, Purification, and Characterization of Recombinant Human Extracellular Superoxide Dismutase in SF9 Insect Cells  

Shrestha, Pravesh (Department of Biochemistry, College of Life Sciences and Biotechnology, Yonsei University)
Yun, Ji-Hye (Department of Biochemistry, College of Life Sciences and Biotechnology, Yonsei University)
Kim, Woo Taek (Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University)
Kim, Tae-Yoon (Department of Dermatology and Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea)
Lee, Weontae (Department of Biochemistry, College of Life Sciences and Biotechnology, Yonsei University)
Abstract
A balance between production and degradation of reactive oxygen species (ROS) is critical for maintaining cellular homeostasis. Increased levels of ROS during oxidative stress are associated with disease conditions. Antioxidant enzymes, such as extracellular superoxide dismutase (EC-SOD), in the extracellular matrix (ECM) neutralize the toxicity of superoxide. Recent studies have emphasized the importance of EC-SOD in protecting the brain, lungs, and other tissues from oxidative stress. Therefore, EC-SOD would be an excellent therapeutic drug for treatment of diseases caused by oxidative stress. We cloned both the full length (residues 1-240) and truncated (residues 19-240) forms of human EC-SOD (hEC-SOD) into the donor plasmid pFastBacHTb. After transposition, the bacmid was transfected into the Sf9-baculovirus expression system and the expressed hEC-SOD purified using FLAG-tag. Western blot analysis revealed that hEC-SOD is present both as a monomer (33 kDa) and a dimer (66 kDa), as detected by the FLAG antibody. A water-soluble tetrazolium (WST-1) assay showed that both full length and truncated hEC-SOD proteins were enzymatically active. We showed that a potent superoxide dismutase inhibitor, diethyldithiocarbamate (DDC), inhibits hEC-SOD activity.
Keywords
extracellular matrix (ECM); human extracellular superoxide (hEC-SOD); LC-MS/MS; reactive oxygen species (ROS); sodiumdiethyldithiocarbamate;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Antonyuk, S.V., Strange, R.W., Marklund, S.L., and Hasnain, S.S. (2009). The structure of human extracellular copper-zinc superoxide dismutase at 1.7 A resolution: insights into heparin and collagen binding. J. Mol. Biol. 388, 310-326.   DOI
2 Arnelle, D.R., Day, B.J., and Stamler, J.S. (1997). Diethyl dithiocarbamate- induced decomposition of S-nitrosothiols. Nitric Oxide. 1, 56-64.   DOI
3 Bae, J.Y., Koo, B.K., Ryu, H.B., Song, J.A., Nguyen, M.T., Vu, T.T., Son, Y.J., Lee, H.K., and Choe, H. (2013). Cu/Zn incorporation during purification of soluble human EC-SOD from E. coli stabilizes proper disulfide bond formation. Appl. Biochem. Biotechnol. 169, 1633-1647.   DOI
4 Beyer, W., Imlay, J., and Fridovich, I. (1991). Superoxide dismutases. Prog. Nucl. Acid Res. Mol. Biol. 40, 221-253.   DOI
5 Bowler, R.P., Nicks, M., Warnick, K., and Crapo, J.D. (2002). Role of extracellular superoxide dismutase in bleomycin-induced pulmonary fibrosis. Am. J. Physiol. Lung Cell Mol. Physiol. 282, L719-726.   DOI
6 Bowler, R.P., Nicks, M., Tran, K., Tanner, G., Chang, L.Y., Young, S.K., and Worthen, G.S. (2004). Extracellular superoxide dismutase attenuates lipopolysaccharide-induced neutrophilic inflammation. Am. J. Respir. Cell. Mol. Biol. 31, 432-439.   DOI
7 Byun, S.J., Ji, M.R., Jang, Y.J., Hwang, A.I., Chung, H.K., Kim, J.S., Kim, K.W., Yoo, J.G., and Kim, T.Y. (2013). Human extracellular superoxide dismutase (EC-SOD) expression in transgenic chicken. BMB Rep. 46, 404-409.   DOI
8 Carlsson, L.M., Jonsson, J., Edlund, T., and Marklund, S.L. (1995). Mice lacking extracellular superoxide dismutase are more sensitive to hyperoxia. Proc. Natl. Acad. Sci. USA 92, 6264-6268.   DOI
9 Chen, H.L., Yen, C.C., Tsai, T.C., Yu, C.H., Liou, Y.J., and Lai, Y.W. (2006). Production and characterization of human extracellular superoxide dismutase in the methylotrophic yeast Pichia pastoris. J. Agric. Food Chem. 54, 8041-8047.   DOI
10 Chen, C.M., Lai, Z.L., Yen, C.C., Wang, M.L., and Chen, H.L. (2013). Cloning and expression of the human extracellular superoxide dismutase (EC-SOD) gene in probiotic lactobacillus casei. Int. J. Biosci. Biochem. Bioinforma 3, 557-561.
11 Demchenko, I.T., Oury, T.D., Crapo, J.D., and Piantadosi, C.A. (2002). Regulation of the brain's vascular responses to oxygen. Circ. Res. 91, 1031-1037.   DOI
12 Didion, S.P., Hathaway, C.A., and Faraci, F.M. (2001). Superoxide levels and function of cerebral blood vessels after inhibition of CuZn-SOD. Am. J. Physiol. Heart Circ. Physiol. 281, H1697-H1703.   DOI
13 He, H.J., Yuan, Q.S., Yang, G. Z., and Wu, X.F. (2002). High-level expression of human extracellular superoxide dismutase in Escherichia coli and insect cells. Protein Expr. Purif. 24, 13-17.   DOI
14 Due, A.V., Petersen, S.V., Valnickova, Z., Ostergaard, L., Oury, T.D., and Crapo, J.D. (2006). Extracellular superoxide dismutase exists as an octamer. FEBS Lett. 580, 1485-1489.   DOI
15 Edlund, A., Edlund, T., Hjalmarsson, K., Marklund, S.L., Sandstrom, J., Stromqvist, M., and Tibell, L. (1992). A non-glycosylated extracellular superoxide dismutase variant. Biochem. J. 288, 451-456.   DOI
16 Folz, R.J., Abushamaa, A.M., and Suliman, H.B. (1999). Extracellular superoxide dismutase in the airways of transgenic mice reduces inflammation and attenuates lung toxicity following hyperoxia. J. Clin. Invest. 103, 1055-1066.   DOI
17 Iqbal, J., and Whitney, P. (1991). Use of cyanide and diethyldithiocarbamate in the assay of superoxide dismutases. Free Radic. Biol. Med. 10, 69-77.   DOI
18 Li, J., Li, P.F., Dietz, R., and von Harsdorf, R. (2002). Intracellular superoxide induces apoptosis in VSMCs: role of mitochondrial membrane potential, cytochrome C and caspases. Apoptosis 7, 511-517.   DOI
19 Liu, T., Qian, W.J., Gritsenko, M.A., Camp 2nd, D.G., Monroe, M.E., Moore R.J., and Smith, R.D. (2005). Human plasma Nglycoproteome analysis by immunoaffinity subtraction, hydrazide chemistry, and mass spectrometry. J. Proteome Res. 4, 2070-2080.   DOI
20 Mamo, L.B., Suliman, H.B., Giles, B.L., Auten, R.L., Piantadosi, C.A., and Nozik-Grayck, E. (2004). Discordant extracellular superoxide dismutase expression and activity in neonatal hyperoxic lung. Am. J. Respir. Crit. Care Med. 170, 313-318.   DOI
21 Oury, T.D., Day, B.J., and Crapo, J.D. (1996b). Extracellular superoxide dismutase in vessels and airways of humans and baboons. Free Radic. Biol. Med. 20, 957-965.   DOI
22 Nozik-Grayck, E., Suliman, H.B., and Piantadosi, C.A. (2005). Extracellular superoxide dismutase. Int. J. Biochem. Cell Biol. 37, 2466-2471.   DOI
23 Ohta, H., Adachi, T., and Hirano, K. (1994). Internalization of human extracellular- superoxide dismutase by bovine aortic endothelial cells. Free Rad. Biol. Med. 16, 501-507.   DOI
24 Oury, T.D., Day, B.J., and Crapo, J.D. (1996a). Extracellular superoxide dismutase: a regulator of nitric oxide bioavailability. Lab. Invest. 75, 617- 636.
25 Oury, T.D., Schaefer, L.M., Fattman, C.L., Choi, A., Weck, K.E., and Watkins, S.C. (2002). Depletion of pulmonary EC-SOD after exposure to hyperoxia. Am J. Physiol. Lung Cell Mol. Physiol. 283, L777-784.   DOI
26 Petersen, S.V., Olsen, D.A., Kenney, J.M., Oury, T.D., Valnickova, Z., Thogersen, I.B., Crapo, and J.D., Enghild, J.J. (2005). The high concentration of $Arg^{213}{\rightarrow}Gly$ extracellular superoxide dismutase (EC-SOD) in plasma is caused by a reduction of both heparin and collagen affinities. Biochem. J. 385, 427-432.   DOI
27 Ryu, K., Kim, Y.H., Lee, J.S., Jeon, B., Kim, and T.Y. (2008). Increased yield of high-purity and active tetrameric recombinant human EC-SOD by solid phase refolding. J. Microbiol. Biotechnol. 18, 1648-1654.
28 Suliman, H.B., Ali, M., and Piantadosi, C.A. (2004). Superoxide dismutase-3 promotes full expression of the EPO response to hypoxia. Blood 104, 43-50.   DOI
29 Tan, R.J., Fattman, C.L., Watkins, S.C., and Oury, T.D (2004). Redistribution of pulmonary EC-SOD after exposure to asbestos. J. Appl. Physiol. 97, 2006-2013.   DOI
30 Tan, A.S., and Berridge, M.V. (2000). Superoxide produced by activated neutrophils efficiently reduces the tetrazolium salt, WST-1 to produce a soluble formazan: a simple colorimetric assay for measuring respiratory burst activation and for screening antiinflammatory agents. J. Immunol. Methods 238, 59-68.   DOI
31 Tibell, L., Hjalmarsson, K., Edlund, T., Skogman, G., Engstrom, V., and Marklund, S.L. (1987). Expression of human extracellular superoxide dismutase in Chinese hamster ovary cells and characterization of the product. Proc. Natl. Acad. Sci. USA 84, 6634-6638.   DOI
32 Yun, J.H., Kim, K., Jung, Y., Park, J.H., Cho H.S., and Lee, W. (2015). Co-expression of human agouti-related protein enhances expression and stability of human melanocortin-4 receptor. Biochem. Biophys. Res. Commun. 456, 116-121.   DOI
33 Zelko, I.N., Mariani, T.J., and Folz, R.J. (2002). Superoxide dismutase multigene family: a comparison of the CuZn-SOD (SOD1), Mn-SOD (SOD2), and EC-SOD (SOD3) gene structures, evolution, and expression. Free Radical. Biol. Med. 33, 337-349.   DOI