DOI QR코드

DOI QR Code

Preparation of MA-PLA Using Radical Initiator and Miscibility Improvement of PLA/PA11 Blends

라디칼 개시제를 이용한 MA-PLA 제조 및 바이오플라스틱 PLA/PA11 블렌드의 상용성 개선

  • Lee, Jong-Eun (Department of Applied Chemical Engineering, School of Energy.Materials.Chemical Engineering, Korea University of Technology and Education) ;
  • Kim, Han-Eol (Department of Applied Chemical Engineering, School of Energy.Materials.Chemical Engineering, Korea University of Technology and Education) ;
  • Nam, Byeong-Uk (Department of Applied Chemical Engineering, School of Energy.Materials.Chemical Engineering, Korea University of Technology and Education)
  • 이종은 (한국기술교육대학교 에너지.신소재.화학공학부 응용화학공학과) ;
  • 김한얼 (한국기술교육대학교 에너지.신소재.화학공학부 응용화학공학과) ;
  • 남병욱 (한국기술교육대학교 에너지.신소재.화학공학부 응용화학공학과)
  • Received : 2019.01.30
  • Accepted : 2019.04.05
  • Published : 2019.04.30

Abstract

Recently, various investigation of vegetable oil which is extracted from natural resources is being progressed because of its low cost and environmental aspect. However, double bonds in vegetable oil should be substituted to other high reactive functional group due to its low reactivity for synthesizing bio-polymeric materials. ${\alpha}$-eleostearic acid, which is consist of conjugated triene, is the main component of tung oil, and the conjugated triene allows tung oil to have higher reactivity than other vegetable oil. In this study, tung oil is copolymerized with styrene and divinylbenzene to make thermoset resin without any substitution of functional group. Thermal and mechanical properties are measured to investigate the effects of the composition of each monomer on the synthesized thermoset resin. The result shows that the products have only one Tg, which means the synthesized thermoset resins are homogeneous in molecular level. Mechanical properties show that tung oil act as soft segment in the copolymer and make more elastic product. On the other hand, divinylbenzene acts as hard segment and makes more brittle product.

Vegetable oil은 자연 유래 물질로 낮은 가격 및 친환경적이라는 장점으로 최근 다양한 연구가 진행되고 있다. 하지만 vegetable oil 내의 이중결합의 낮은 반응성으로 인해 고분자 합성의 기반 물질로 사용하기 위해서는 반응성이 높은 관능기로 치환하여 사용하는 경우가 많다. Tung oil은 ${\alpha}$-eleostearic acid를 주성분으로 하는데, 이 구조는 3개의 이중결합이 공명구조 형태로 되어있기 때문에 다른 vegetable oil과는 달리 높은 반응성을 보인다. 본 연구에서는 이러한 tung oil을 styrene 및 divinylbenzene 등의 monomer와 양이온 중합을 통해 tung oil의 관능기 치환 과정이 없는 열경화성 수지를 합성하였으며, 각 monomer의 조성이 합성된 열경화성 수지에 미치는 영향을 확인하기 위해 열적 기계적 물성을 측정하였다. 그 결과, tung oil-styrene-divinybenzene copolymer는 단일 Tg를 갖는 homogeneous한 열경화성 고분자를 형성하는 것을 확인하였으며, 기계적 물성의 변화를 통해 tung oil 및 styrene은 soft segment로써 합성된 copolymer에 elastic한 성질을 부여하고, divinylbenzene은 hard segment로 작용하여 합성된 copolymer에 brittle한 성질을 부여하는 것을 확인하였다.

Keywords

SHGSCZ_2019_v20n4_76_f0001.png 이미지

Fig. 1. 1H-NMR spectra of (A) PLA and (B)MA-g-PLA.

SHGSCZ_2019_v20n4_76_f0002.png 이미지

Fig. 2. Grafting yield and Melt Index results depending on radical initiator (PK14) and maleic anhydride (MA) content.

SHGSCZ_2019_v20n4_76_f0003.png 이미지

Fig. 3. Melt Index variation depending on compatibilizer content of PLA / PA11 blends.

SHGSCZ_2019_v20n4_76_f0004.png 이미지

Fig. 4. Impact strength results of PLA and PA11 blends with 2, 5, 10 phr of Compatibilizer(X01M1).

SHGSCZ_2019_v20n4_76_f0005.png 이미지

Fig. 5. (a) Flexural Modulus and (b) Tensile Strength results of PLA/PA11 blends.

SHGSCZ_2019_v20n4_76_f0006.png 이미지

Fig. 6. Characteristics of PLA/PA11 75/25 blends with three types of compatibilizers; (a) Metl Index and (b) Impact Strength.

SHGSCZ_2019_v20n4_76_f0007.png 이미지

Fig. 8. FE-SEM images of PLA/PA11/compatibilizerblends; (A) 25/75, (B) 75/25, (a) 0 phr, (b) 2phr, (c) 5 phr, (d) 10 phr of compatibilizer(X01M1) content.

SHGSCZ_2019_v20n4_76_f0008.png 이미지

Fig. 7. (a) Impact Strength and (b) Flexural Modulus results of PLA/PA11/X01M1 75/25/5 blends reinforced by three types of impact modifiers.

Table 1. Compositions for MA-g-PLA Prepared by Radical Initiator and Modifier

SHGSCZ_2019_v20n4_76_t0001.png 이미지

Table 2. Formulations of PLA and PA11 Blends with Compatibilizer (X01M1) Content

SHGSCZ_2019_v20n4_76_t0002.png 이미지

Table 3. Formulations of PLA/PA11 (75/25) Blends by Three Types of Compatibilizers with 5 phr Fixed Content

SHGSCZ_2019_v20n4_76_t0003.png 이미지

Table 4. Formulations of PLA/PA11/X01M1 (75/25/5) Blends Incorporated with Three Types of Impact Modifiers with 10 phr Fixed Content

SHGSCZ_2019_v20n4_76_t0004.png 이미지

References

  1. B. R. Kim, S. K. Jeoung, Y. K. Ko, J. U. Ha, Y. W. Kim, S. Y. Lee and P. C. Lee, "Study of Dimensional Changes depending on Moisture Sorption of Change in Polymeric Materials for Automotive Exterior Lamp", POLYMER- KOREA, Vol.42, No.6 p. 1030-1034, 2018. DOI : https://doi.org/10.7317/pk.2018.42.6.1030
  2. M. A. Ghalia and Y. Dahman, "Biodegradable poly (lactic acid)-based scaffolds: synthesis and biomedical applications", Journal of Polymer Research, Vol. 24, No.5 p. 24-74, 2017. DOI : https://doi.org/10.1007/s10965-017-1227-2
  3. L. Xiao, Y. Mai, F. He, L. Yu, L. Zhang, H. Tang and G. Yang, "Bio-based green composites with high performance from poly (lactic acid) and surface-modified microcrystalline cellulose", Journal of Materials Chemistry, Vol.22, No.31 p. 15732-15739, 2012. DOI : https://doi.org/10.1039/c2jm32373g
  4. K. Formela, L. Zedler, A. Hejna and A. Tercjak, "Reactive extrusion of bio-based polymer blends and composites-Current trends and future developments", Express Polymer Letters, Vol.12, No.1 p. 24-57, 2018. DOI : https://doi.org/10.3144/expresspolymlett.2018.4
  5. E. T. Vink, K. R. Rabago, D. A. Glassner and P. R. Grubber, "Applications of life cycle assessment to NatureWorksTM polylactide (PLA) production", Polymer Degradation and stability, Vol.80, No.3 p. 403-419, 2003. DOI : https://doi.org/10.1016/s0141-3910(02)00372-5
  6. J. Lunt, "Large-scale production, properties and commercial applications of polylactic acid polymers", Polymer degradation and stability, Vol.59, No.1 p. 145-152, 1998. DOI : https://doi.org/10.1016/s0141-3910(97)00148-1
  7. D. S. Jeong, S. H. Han and Y. C. Kim, "Effects of Heat Treatment on the Physical Properties of PP Composites with Bamboo Fiber Treated by Silane", POLYMER-KOREA, Vol.42, No.6 p. 960-966, 2018. DOI : https://doi.org/10.7317/pk.2018.42.6.960
  8. M. Avella, G. Bogoeva-Gaceva, A. Buzarovska, M. E. Errico, G. Gentile and A. Grozdanov, "Poly (lactic acid)-based biocomposites reinforced with kenaf fibers", Journal of Applied Polymer Science, Vol.108, No.6 p. 3542-3551, 2008. DOI : https://doi.org/10.1002/app.28004
  9. S. W. Hwang, S. S. Lee, C. K. Lee, J. Y. Lee, J. K. Shim, S. E. Selke, H. Soto-Valdez, L. Matuana, M. Rubino and R. Auras, "Grafting of maleic anhydride on poly (L-lactic acid). Effects on physical and mechanical properties", Polymer Testing, Vol.31, No.2 p. 333-344, 2012. DOI : https://doi.org/10.1016/j.polymertesting.2011.12.005
  10. F. Hassouna, J. M. Raquez, F. Addiego, V. Toniazzo, P. Dubois and D. Ruch, "New development on plasticized poly (lactide): chemical grafting of citrate on PLA by reactive extrusion", European Polymer Journal, Vol.48, No.2 p. 404-415, 2012. DOI : https://doi.org/10.1016/j.eurpolymj.2011.12.001
  11. V. H. Orozco, J. Palacio, J. Sierra and B. L. Lopez, "Increased covalent conjugation of a model antigen to poly (lactic acid)-g-maleic anhydride nanoparticles compared to bare poly (lactic acid) nanoparticles", Colloid and Polymer Science, Vol.291, No.12 p. 2775-2781, 2013. DOI : https://doi.org/10.1007/s00396-013-3023-9
  12. S. Detyothin, S. E. Selke, R. Narayan, M. Rubino and R. Auras, "Reactive functionalization of poly (lactic acid), PLA: Effects of the reactive modifier, initiator and processing conditions on the final grafted maleic anhydride content and molecular weight of PLA", Polymer degradation and stability, Vol.98, No.12 p. 2697-2708, 2013. DOI : https://doi.org/10.1016/j.polymdegradstab.2013.10.001
  13. M. Sclavons, V. Carlier, B. De Roover, P. Franquinet, J. Devaux and R. Legras, "The anhydride content of some commercial PP-g-MA: FTIR and titration", Journal of applied polymer science, Vol.62, No.8 p. 1205-1210, 1996. DOI : https://doi.org/10.1002/(sici)1097-4628(19961121)62:8<1205::aid-app10>3.3.co;2-j
  14. M. E. Gonzalez-Lopez, J. R. Robledo-Ortiz, R. Manriquez-Gonzalez, J. A. Silva-Guzman and A. A. Perez-Fonseca, " Polylactic acid functionalization with maleic anhydride and its use as coupling agent in natural fiber biocomposites: a review", Composite Interfaces, Vol.25, No.5 p. 515-538, 2018. DOI : https://doi.org/10.1080/09276440.2018.1439622
  15. J. Duvall, C. Sellitti, C. Myers, A. Hiltner and E. Baer, "Effect of compatibilization on the properties of polypropylene/polyamide-66 (75/25 wt/wt) blends", Journal of applied polymer science, Vol.52, No.2 p. 195-206, 1994. DOI : https://doi.org/10.1002/app.1994.070520207
  16. C. Jiang, S. Filippi and P. Magagnini, "Reactive compatibilizer precursors for LDPE/PA6 blends. II: maleic anhydride grafted polyethylenes", Polymer, Vol.44, No.8 p. 2411-2422, 2003. DOI : https://doi.org/10.1016/s0032-3861(03)00133-2
  17. M. Khemakhem, K. Lamnawar, A. Maazouz and M. Jaziri, "Biocomposites based on polylactic acid and olive solid waste fillers: Effect of two compatibilization approaches on the physicochemical, rheological, and mechanical properties", Polymer Composites, Vol.39, No.1, p. 152-163, 2018. DOI : https://doi.org/10.1002/pc.24094
  18. H. X. Wu, S. Q. Jiang,h. R. Cui and J. Y. Cui, "Maleic Anhydride Grafted Modified PA6 as Compatilizer Preparation of PLA/PA6 Blend", Applied Mechanics & Materials, Vol.590, No.1 p. 284-288, 2014. DOI : https://doi.org/10.4028/www.scientific.net/amm.590.284
  19. B. U. Nam and B. S. Lee, "Toughening of PLA stereocomplex by impact modifiers", Journal of the Korea Academia-Industrial Cooperation Society, Vol.13, No.2 p. 919-925, 2012. DOI : https://doi.org/10.5762/kais.2012.13.2.919