• Title/Summary/Keyword: rapid cycling

Search Result 56, Processing Time 0.031 seconds

Effects of a Brain-Based Evolutionary Approach Using Rapid-cycling Brassica rapa on Elementary School Students' Interests in Life Cycle of Plants ('식물의 한살이' 단원에서 속성배추를 활용한 뇌기반 진화적 접근법이 초등학생의 흥미에 미치는 영향)

  • Kim, So-Young;Lim, Chae-Seong;Kim, Sung-Ha;Hong, Juneuy
    • Journal of Korean Elementary Science Education
    • /
    • v.35 no.3
    • /
    • pp.336-347
    • /
    • 2016
  • The purpose of this study is to analyze the effects of elementary science instruction applying a Brain-Based Evolutionary (ABC-DEF) approach using Rapid-cycling Brassica rapa (RcBr) on the interests of elementary school students. For this study, two elementary school classes in Seoul and one elementary school class in Gyeonggi-do were selected. Comparison group received instruction using textbook and teacher's guidebook. A class taught using only brain-based evolutionary approach is experimental group A, and a class taught through brain-based evolutionary approach using RcBr is experimental group B. In order to analyze the quantitative differences about the interests of students, three kinds of test were administered to the students: 'Applied Unit-Related Interests', 'Follow-up Interests' and 'Interests in the observation material'. To get more information, qualitative data such as portfolios and interviews were analyzed. The major findings are as follows. First, for the test of applied unit-related interests, a statistically significant difference was found between comparison group and experimental group A, and between comparison group and experimental group B. As the results of interviews, the students have shown that the intensified exploration activities on plant in Brain-Based Evolutionary approach applied to experimental groups A and B had a positive effect. Second, for test of follow-up interests, we classified the students' follow-up interests into three types: extended-developed-deepened (EDD) type, simply expanded-maintained (SEM) type, and stopped or decreased (SD) type. Both experimental group A and experimental group B showed the highest percentage of EDD. Also, observation journal applying the evolutionary process (DEF) showed a positive effect on the students' interest. Comparison group showed the highest percentage of SEM. Third, for test of applied interests in the observation material, a statistically significant difference was found between comparison group and experimental group A, and comparison group and experimental group B. Experimental group B using RcBr showed the highest average score, while experimental group A showed a higher score than comparison group. Based on these findings, educational implications of Brain-Based Evolutionary approach and using RcBr are discussed.

Development of Induction Heating Apparatus for Rapid Heating of Metallic Mold (미세 임프린팅용 금속몰드의 급속가열을 위한 유도가열기구 개발)

  • Hong, S.K.;Lee, S.H.;Heo, Y.M.;Kang, J.J.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.199-204
    • /
    • 2007
  • Hot embossing, one of Nanoimprint Lithography(NIL) techniques, has been getting attention as an alternative candidate of next generation patterning technologies by the advantages of simplicity and low cost compared to conventional photolithographies. A typical hot embossing usually, however, takes more than ten minutes for one cycle of the process because of a long thermal cycling. Over the last few years a number of studies have been made to reduce the cycle time for hot embossing or similar patterning processes. The target of this research is to develop an induction heating apparatus for heating a metallic micro patterning mold at very high speed with the large-area uniformity of temperature distribution. It was found that a 0.5 mm-thick nickel mold can be heated from $25^{\circ}C$ to $150^{\circ}C$ within 1.5 seconds with the temperature variation of ${\pm}5^{\circ}C$ in 4-inch diameter area, using the induction heating apparatus.

  • PDF

High Temperature Corrosion in Carbon-Rich Gases

  • Young, D.J.
    • Corrosion Science and Technology
    • /
    • v.7 no.2
    • /
    • pp.69-76
    • /
    • 2008
  • Common methods for large scale hydrogen production, such as steam reforming and coal gasification, also involve production of carbonaceous gases. It is therefore necessary to handle process gas streams involving various mixtures of hydrocarbons, $H_2$, $H_2O$, CO and $CO_2$ at moderate to high temperatures. These gases pose a variety of corrosion threats to the alloys used in plant construction. Carbon is a particularly aggressive corrodent, leading to carburisation and, at high carbon activities, to metal dusting. The behaviour of commercial heat resisting alloys 602CA and 800, together with that of 304 stainless steel, was studied during thermal cycling in $CO/CO_2$ at $650-750^{\circ}C$, and also in $CO/H_2/H_2O$ at $680^{\circ}C$. Thermal cycling caused repeated scale separation, which accelerated chromium depletion from the alloy subsurface regions. The $CO/H_2/H_2O$ gas, with $a_C=2.9$ and $p(O_2)=5\times10^{-23}$ atm, caused relatively rapid metal dusting, accompanied by some internal carburisation. In contrast, the $CO/CO_2$ gas, with $a_C=7$ and $p(O_2)=10^{-23}-10^{-24}$ atm caused internal precipitation in all three alloys, but no dusting. Inward diffusion of oxygen led to in situ oxidation of internal carbides. The very different reaction morphologies produced by the two gas mixtures are discussed in terms of competing gas-alloy reaction steps.

Optimal Conditions for the Distribution of Cryoprotectant into the Intact Fish Muscle of Oncorhynchus mykiss during Freeze/Thaw Cycling

  • Kong Chang Suk;Park Kun Young
    • Fisheries and Aquatic Sciences
    • /
    • v.8 no.1
    • /
    • pp.10-16
    • /
    • 2005
  • Conditions for sufficient and rapid distribution of a cryoprotectant (sorbitol solution) into intact fish muscle (Oncorhynchus mykiss) were studied as changing in the residual Ca2+ ATPase activity during freeze/thaw cycling. Chunks of the fish muscle were immersed in 4 concentrations of sorbitol solutions ($20\%$, $30\%$, $45\%$, and $60\%$) by a shaker mechanism at 5$^${circ}C. Whole immersion samples (W) showed a higher value of the residual Ca2+ ATPase activity than those in the untreated controls (C), except in the treated controls (TC), while less effect of immersion concentration could be found. Comparing the extent of penetration of sorbitol into the surface layer to inner layer of immersed fish chunks, outer portion samples achieved excellent cryoprotection with $100\%$ of the residual ATPase activity values or more. For the inner portion samples, $30\%$ and $45\%$ sorbitol solution treatments indicated a higher ATPase activity than $60\%$ treatment. At high concentrations, mass transfer rates during osmotic dehydration might berapid and it causes faster surface drying by dewatering at surface solute layer. Periodically immersed and relaxed samples, W (5-3-1), led to good cryoprotection effect: W (5-3-1) indicated high residual Ca2+ ATPase activity values and the residual ATPase activity values excess $100\%$ in immersion of $30\%$ and $45\%$ sorbitol solutions.

Effect of Sulfate-based Cathode-Electrolyte Interphases on Electrochemical Performance of Ni-rich Cathode Material

  • Chae, Bum-Jin;Song, Hye Ji;Mun, Junyoung;Yim, Taeeun
    • Journal of Electrochemical Science and Technology
    • /
    • v.11 no.4
    • /
    • pp.361-367
    • /
    • 2020
  • Recently, layered nickel-rich cathode materials (NCM) have attracted considerable attention as advanced alternative cathode materials for use in lithium-ion batteries (LIBs). However, their inferior surface stability that gives rise to rapid fading of cycling performance is a significant drawback. This paper proposes a simple and convenient coating method that improves the surface stability of NCM using sulfate-based solvents that create artificial cathode-electrolyte interphases (CEI) on the NCM surface. SOx-based artificial CEI layer is successfully coated on the surface of the NCM through a wet-coating process that uses dimethyl sulfone (DMS) and dimethyl sulfoxide (DMSO) as liquid precursors. It is found that the SOx-based artificial CEI layer is well developed on the surface of NCM with a thickness of a few nanometers, and it does not degrade the layered structure of NCM. In cycling performance tests, cells with DMS- or DMSO-modified NCM811 cathodes exhibited improved specific capacity retention at room temperature as well as at high temperature (DMS-NCM811: 99.4%, DMSO-NCM811: 88.6%, and NCM811: 78.4%), as the SOx-based artificial CEI layer effectively suppresses undesired surface reactions such as electrolyte decomposition.

A Study on Characteristics Improvement of Epoxy Resin Mold Using Metal Fillers and Its Application (금속 보강재를 이용한 에폭시 수지형의 특성 향상 및 적용에 관한 연구)

  • ;;;;Nakagawa Takeo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.4
    • /
    • pp.165-173
    • /
    • 2003
  • As the cycling time of new products have become more and more short in recent years, the demand for lowering the cost and reducing the production time becomes stronger. In order for the demand, the rapid prototyping and rapid tooling technology have been used. It has been widely known that RP technology has advantages with fabricating 3-D object having a complicated geometric shape. RP products, however, have a limitation with applying to the real die and mold because soft materials such as resin, paper and wax has been mostly used in RP technology. So in this paper, the RP products have been copied to semi-metallic soft tools using the mixture of metal fillers and epoxy resin. In order to evaluate the effect of the fillers on the characteristics of semi-metallic soft tools, three fillers are used including commercial aluminum powder, cast iron powder recycled by machining chips, and aluminum short fiber made by self-excited vibration technique. Besides, in the case of aluminum powder, the change of characteristics of semi-metallic soft tools is also tested according to the volume fraction of the powder.

Induction Heating Apparatus for Rapid Heating of Flat-Type Metallic Mold in Hot Embossing (미세 패턴 성형용 판형 금형의 급속 가열을 위한 유도가열기구)

  • Hong, S.K.;Lee, S.H.;Heo, Y.M.;Kang, J.J.
    • Transactions of Materials Processing
    • /
    • v.16 no.4 s.94
    • /
    • pp.282-287
    • /
    • 2007
  • Hot embossing, one of Nanoimprint Lithography(NIL) techniques, has been getting attention as an alternative candidate of next generation patterning technologies by the advantages of simplicity and low cost compared to conventional photolithographies. A typical hot embossing usually, however, takes more than ten minutes for one cycle of the process because of a long thermal cycling. Over the last few years a number of studies have been made to reduce the cycle time for hot embossing or similar patterning processes. The target of this research is to develop an induction heating apparatus for heating a metallic micro patterning mold at very high speed with the large-area uniformity of temperature distribution. It was found that a 0.5 mm-thick nickel mold can be heated from $25^{\circ}C\;to\;150^{\circ}C$ within 1.5 seconds with the temperature variation of ${\pm}5^{\circ}C$ in 4-inch diameter area, using the induction heating apparatus.

Microfluidic platform for voltammetric analysis of biomolecules (Microfludic 플랫폼을 이용한 생체 분자의 voltammetric 분석)

  • Chand, Rohit;Han, Da-Woon;Jha, Sandeep K.;Kim, Yong-Sang
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1686-1687
    • /
    • 2011
  • A microfabricated chip with in-channel electrochemical cell using interdigitated gold electrode was fabricated for sensitive electrochemical analysis. The gold electrodes were fabricated on glass wafer using thermal evaporator and were covered using PDMS mold containing microchannel for analyte and electrolyte. The active area of each electrode was $250\;{\mu}m{\times}200\;{\mu}m$ with a gap of 200 ${\mu}m$ between the electrodes. Microelectrodes results in maximum amplification of signal, since the signal enhancement effect due to cycling of the reduced and oxidized species strongly depends on the inter electrode distance. Analytes such as methylene blue and guanosine were characterized using the fabricated electrodes and their electrochemical characteristics were compared with conventional bulk electrodes. The device so developed shall find use as disposable electrochemical cell for rapid and sensitive analysis of electroactive species.

  • PDF

Experimental Test and Numerical Simulation on the SMA Characteristics and Behaviors through the Load-Training (하중 트레이닝을 통한 형상기억합금의 특성 실험과 거동 전산 모사)

  • Kim, Sang-Haun;Cho, Maeng-Hyo
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.700-705
    • /
    • 2007
  • In this study, we observe the application of shape memory alloy(SMA) into smart structures for repeatable actuation, because SMA changes its material properties and characteristics progressively under cyclic loading conditions and finally reaches stable path(state) after a certain number of stress/temperature loading-unloading cycles, so called 'training'. In this paper, SMA wires that have been in a stable state through the training are used. Stress-strain curve of the SMA wire at different temperature levels are measured. In addition, we observe other important effects such as the rate effect according to strain rates for rapid actuation response. The current work presents the experimental test using SMA wire after training completion by mechanical cycling. Through these tests, we measure the characteristics of SMA. With the estimated SMA properties and effects, we compare the experimental results with the simulation results based on the SMA constitutive equations.

  • PDF

Experimental Test and Numerical Simulation on the SMA Characteristics and Behaviors for Repeated Actuations (반복적인 작동을 위한 형상기억합금의 특성 실험과 거동 전산 모사)

  • Kim, Sang-Haun;Cho, Maeng-Hyo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.3 s.258
    • /
    • pp.373-379
    • /
    • 2007
  • In this study, we observe the application of shape memory alloy(SMA) into smart structures for repeatable actuation, because SMA changes its material properties and characteristics progressively under cyclic loading conditions and finally reaches stable path(state) after a certain number of stress/temperature loading-unloading cycles, so called 'training'. In this paper, SMA wires that have been in a stable state through the training are used. Stress-strain curve of the SMA wire at different temperature levels are measured. In addition, we observe other important effects such as the rate effect according to strain rates for rapid actuation response. The current work presents the experimental test using SMA wire after training completion by mechanical cycling. Through these tests, we measure the characteristics of SMA. With the estimated SMA properties and effects, we compare the experimental results with the simulation results based on the SMA constitutive equations.