Browse > Article
http://dx.doi.org/10.5657/fas.2005.8.1.010

Optimal Conditions for the Distribution of Cryoprotectant into the Intact Fish Muscle of Oncorhynchus mykiss during Freeze/Thaw Cycling  

Kong Chang Suk (Department of Food Science and Nutrition, Pusan National University)
Park Kun Young (Department of Food Science and Nutrition, Pusan National University)
Publication Information
Fisheries and Aquatic Sciences / v.8, no.1, 2005 , pp. 10-16 More about this Journal
Abstract
Conditions for sufficient and rapid distribution of a cryoprotectant (sorbitol solution) into intact fish muscle (Oncorhynchus mykiss) were studied as changing in the residual Ca2+ ATPase activity during freeze/thaw cycling. Chunks of the fish muscle were immersed in 4 concentrations of sorbitol solutions ($20\%$, $30\%$, $45\%$, and $60\%$) by a shaker mechanism at 5$^${circ}C. Whole immersion samples (W) showed a higher value of the residual Ca2+ ATPase activity than those in the untreated controls (C), except in the treated controls (TC), while less effect of immersion concentration could be found. Comparing the extent of penetration of sorbitol into the surface layer to inner layer of immersed fish chunks, outer portion samples achieved excellent cryoprotection with $100\%$ of the residual ATPase activity values or more. For the inner portion samples, $30\%$ and $45\%$ sorbitol solution treatments indicated a higher ATPase activity than $60\%$ treatment. At high concentrations, mass transfer rates during osmotic dehydration might berapid and it causes faster surface drying by dewatering at surface solute layer. Periodically immersed and relaxed samples, W (5-3-1), led to good cryoprotection effect: W (5-3-1) indicated high residual Ca2+ ATPase activity values and the residual ATPase activity values excess $100\%$ in immersion of $30\%$ and $45\%$ sorbitol solutions.
Keywords
Citations & Related Records
연도 인용수 순위
  • Reference
1 Lee, J.C. and S.N. Timasheff. 1981. The stabilization of proteins by sucrose. J. Biol. Chem., 256, 7193-7201
2 MacDonard, G.A., N.D.C. Wilson and T.C. Lanier. 1990. Stabilized mince: an alternative to the traditional surimi process. In: Chilling and Freezing of New Fish Products. Intl, Inst. Refrig., 69-76
3 MacDonard, G.A. and T.C. Lanier. 1994. Actomyosin stabilization to freeze-thaw and heat denaturation by lactate salts. J. Food Sci., 59, 101-105   DOI   ScienceOn
4 MacDonald, G.A., T.C. Lanier, H.E. Swaisgood and D.D. Hamann. 1996. Mechnism for stabilization of fish actomyosin by sodium lactate. J. Agr. Food Chem., 44, 106-112   DOI   ScienceOn
5 Matsumoto, J.J. 1979. Denaturation of fish muscle proteins during frozen storage. In: Proteins at Low Temperature, Fennema, O., ed. American Chemical Society, Washington DC, pp. 206-224
6 Matsumoto, J.J. and S. Noguchi. 1992. Cryostabilization of protein in Surimi. In: Surimi Technology, Lanier, T.C. and C.M. Lee, cds. Marcel Dekker, Inc., New York, pp. 357-388
7 Arakawa, T. and S.N. Timasheff. 1982. Stabilization of protein structure by sugars. Biochemistry, 21, 6536-6544   DOI   ScienceOn
8 Back, J.F., D. Oakenfull and M.B. Smith. 1979. Increased thermal stability of proteins in the presence of sugars and polyols. Biochemistry, 18, 5191-5196   DOI   ScienceOn
9 Bolin. H.R., C.C. Huxsoll, R. Jackson and K.C. Ng. 1983. Effect of osmotic agents and concentration on fruit quality. J. Food Sci., 48, 202-205   DOI
10 Carpenter, J.F. and J.H. Crowe. 1988. The mechanism of cryoprotection of proteins by solutes. Cryobiology, 25, 244-255   DOI   ScienceOn
11 Carvajal, P.A., G.A. MacDonald and T.C. Lanier. 1999. Cryostabilization mechanism of fish muscle proteins by maltodextrins. Cryobiology, 38, 16-26   DOI   ScienceOn
12 Connell, J.J. 1961. The relative stabilities of the skeletal muscle myosins of some animals. Biochem. J., 80, 503-509   DOI
13 Park, J.W., T.C. Lanier and D.P. Green. 1988. Cryoprotective effects of sugars, polyols, and/or phosphates on Alaska pollock surimi. J. Food Sci., 53, 1-3   DOI
14 Tait, M.J., A. Suggett, F. Franks, S. Ablett and P.A. Quickenden. 1972. Hydration of monosaccharides: a study by dielectric and nuclear magnetic relaxation. J. Sol. Chem., 1, 131-151   DOI
15 Niwa, E. 1992. The chemistry of surimi gelation. In: Surimi Technology, Lanier, T.C. and C.M. Lee, eds. Marcel Dekker, Inc., New York, pp. 389-428
16 Noguchi, S. 1974. The control of denaturation of fish muscle proteins during frozen storage. Ph.D. Thesis, Sophia University, Tokyo, Japan, pp. 138
17 Noguchi, S. and J.J. Matsumoto. 1975. Studies on the control of the denaturation of the fish muscle proteins during frozen storage. IV. Preventive effect of carboxylic acids. Bull. Jap. Soc. Sci. Fish., 41, 329-335   DOI
18 Okada, M. 1992. History of surimi technology in Japan. In: Surimi Technology, Lanier, T.C. and C.M. Lee, eds. Marcel Dekkar, Inc., New York, Dekker, New York, pp. 3-22
19 Rastogi, N.K., A. Angersbach and D. Knorr. 2000. Evaluation of mass transfer mechanisms during osmostic trearment of plant materials. J. Food Sci., 65, 1016-1019   DOI   ScienceOn
20 Salvatori, D., A. Andres, A. Albors, A. Chiralt and P. Fito. 1998. Structural and compositional profiles in osmotically dehydrated apple. J. Food Sci., 63, 606-610
21 Sych, J., C. Lacroix, L.T. Adambounou and F. Castigne. 1991a. The effect of low- or non-sweet additives on the stability of protein functional properties of frozen cod. Int. J. Food Sci. Technol., 26, 185-197
22 Sych, J., C. Lacroix and M. Carrier. 1991b. Determination of optimal level of lactitol for surimi. J. Food Sci., 56, 285-290   DOI
23 Uedeira, H. 1980. The effect of sugars on the thermal denaturation of lysozyme. Bull. Chem. Soc. Jap., 532, 2451-2455
24 Noguchi, S. and J.J. Matsmoto. 1970. Studies on the control of the denaturation of the fish muscle proteins during frozen storage. I. Preventive effect of Na-glutamate. Bull. Jap. Soc. Sci. Fish., 36, 1078-1087   DOI
25 Fiskke, C.H. and Y. Subbarow. 1925. The colorimetric determination of phosphorus. J. Biol. Chem., 66, 375-400
26 Franks. F., J.R. Ravenhill and D.S. Reid. 1972. Thermodynamic studies of dilute aqueous solutions of cyclic ethers and simple carbohydrates. J. Sol. Chem., 1, 3
27 Fukuda, Y., Z. Tarakita and K. Arai. 1984. Effect of freshness of chub mackerel on the freeze denaturation of myofibrillar protein. Bull. Jap. Soc. Sci. Fish., 50, 845-852   DOI
28 Haard, N.F.1992. Biochemical reactions in fish muscle during frozen storage. In: Seafood Science and Technology. Bligh, E.G., ed. Fishing New Books, Oxford, pp. 176-209
29 Hashimoto, A., A. Kobayashi and K. Arai. 1982. Thermostability of fish myofibrillar Ca-ATPase and adaptation to environmental temperature. Bull. Jap. Soc. Sci. Fish., 48, 671-684   DOI
30 Kawashima, T., K. Arai and T. Saito. 1973. Studies on muscular proteins of fish-IX. An attempt on quantitative determination of actomyosin in frozen 'surimi' from Alaska pollack. Bull. Jap. Soc. Sci. Fish., 39, 207-214   DOI