• Title/Summary/Keyword: random environment

Search Result 987, Processing Time 0.03 seconds

Blockchain Oracle for Random Number Generator using Irregular Big Data (비정형 빅데이터를 이용한 난수생성용 블록체인 오라클)

  • Jung, Seung Wook
    • Convergence Security Journal
    • /
    • v.20 no.2
    • /
    • pp.69-76
    • /
    • 2020
  • Blockchain 2.0 supports programmable smart contract for the various distributed application. However, the environment of running smart contract is limited in the blockchain, so the smart contract only get the deterministic information, such as block height, block hash, and so on. Therefore, some applications, which requires random information, such as lottery or batting, should use oracle service that supply the information outside of blockchain. This paper develops a random number generator oracle service. The random number generator oracle service use irregular big data as entropy source. This paper tests the randomness of bits sequence generated from oracle service using NIST SP800-22. This paper also describes the advantages of irregular big data in our model in perspective of cost comparing hardware entropy source.

Study on the Dynamic Model and Simulation of a Flexible Mechanical Arm Considering its Random Parameters

  • He Bai-Yan;Wang Shu-Xin
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.spc1
    • /
    • pp.265-271
    • /
    • 2005
  • Randomness exists in engineering. Tolerance, assemble-error, environment temperature and wear make the parameters of a mechanical system uncertain. So the behavior or response of the mechanical system is uncertain. In this paper, the uncertain parameters are treated as random variables. So if the probability distribution of a random parameter is known, the simulation of mechanical multibody dynamics can be made by Monte-Carlo method. Thus multibody dynamics simulation results can be obtained in statistics. A new concept called functional reliability is put forward in this paper, which can be defined as the probability of the dynamic parameters(such as position, orientation, velocity, acceleration etc.) of the key parts of a mechanical multibody system belong to their tolerance values. A flexible mechanical arm with random parameters is studied in this paper. The length, width, thickness and density of the flexible arm are treated as random variables and Gaussian distribution is used with given mean and variance. Computer code is developed based on the dynamic model and Monte-Carlo method to simulate the dynamic behavior of the flexible arm. At the same time the end effector's locating reliability is calculated with circular tolerance area. The theory and method presented in this paper are applicable on the dynamics modeling of general multibody systems.

Optimal MIFARE Classic Attack Flow on Actual Environment (실제 환경에 최적화된 MIFARE Classic 공격 절차)

  • Ahn, Hyunjin;Lee, Yerim;Lee, Su-Jin;Han, Dong-Guk
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.12
    • /
    • pp.2240-2250
    • /
    • 2016
  • MIFARE Classic is the most popular contactless smart card, which is primarily used in the management of access control and public transport payment systems. It has several security features such as the proprietary stream cipher Crypto 1, a challenge-response mutual authentication protocol, and a random number generator. Unfortunately, multiple studies have reported structural flaws in its security features. Furthermore, various attack methods that target genuine MIFARE Classic cards or readers have been proposed to crack the card. From a practical perspective, these attacks can be partitioned according to the attacker's ability. However, this measure is insufficient to determine the optimal attack flow due to the refined random number generator. Most card-only attack methods assume a predicted or fixed random number, whereas several commercial cards use unpredictable and unfixable random numbers. In this paper, we propose optimal MIFARE Classic attack procedures with regards to the type of random number generator, as well as an adversary's ability. In addition, we show actual attack results from our portable experimental setup, which is comprised of a commercially developed attack device, a smartphone, and our own application retrieving secret data and sector key.

The Design of Efficient Functional Verification Environment for the future I/O Interface Controller (차세대 입출력 인터페이스 컨트롤러를 위한 효율적인 기능 검증 환경 구현)

  • Hyun Eu-Gin;Seong Kwang-Su
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.43 no.4 s.310
    • /
    • pp.39-49
    • /
    • 2006
  • This paper proposes an efficient verification environment of PCI Express controller that is the future I/O interface. This verification environment consists of a test vector generator, a test bench, and two abstract memories. We also define the assembler set to generate the verification scenarios. In this paper, we propose the random test environment which consists of a random vector generator, a .simulator part, and a compare engine. This verification methodology is useful to find the special errors which are not detected by the basic-behavioral test and hardware-design test.

Adaptive Success Rate-based Sensor Relocation for IoT Applications

  • Kim, Moonseong;Lee, Woochan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.9
    • /
    • pp.3120-3137
    • /
    • 2021
  • Small-sized IoT wireless sensing devices can be deployed with small aircraft such as drones, and the deployment of mobile IoT devices can be relocated to suit data collection with efficient relocation algorithms. However, the terrain may not be able to predict its shape. Mobile IoT devices suitable for these terrains are hopping devices that can move with jumps. So far, most hopping sensor relocation studies have made the unrealistic assumption that all hopping devices know the overall state of the entire network and each device's current state. Recent work has proposed the most realistic distributed network environment-based relocation algorithms that do not require sharing all information simultaneously. However, since the shortest path-based algorithm performs communication and movement requests with terminals, it is not suitable for an area where the distribution of obstacles is uneven. The proposed scheme applies a simple Monte Carlo method based on relay nodes selection random variables that reflect the obstacle distribution's characteristics to choose the best relay node as reinforcement learning, not specific relay nodes. Using the relay node selection random variable could significantly reduce the generation of additional messages that occur to select the shortest path. This paper's additional contribution is that the world's first distributed environment-based relocation protocol is proposed reflecting real-world physical devices' characteristics through the OMNeT++ simulator. We also reconstruct the three days-long disaster environment, and performance evaluation has been performed by applying the proposed protocol to the simulated real-world environment.

Estimating Indoor Radio Environment Maps with Mobile Robots and Machine Learning

  • Taewoong Hwang;Mario R. Camana Acosta;Carla E. Garcia Moreta;Insoo Koo
    • International journal of advanced smart convergence
    • /
    • v.12 no.1
    • /
    • pp.92-100
    • /
    • 2023
  • Wireless communication technology is becoming increasingly prevalent in smart factories, but the rise in the number of wireless devices can lead to interference in the ISM band and obstacles like metal blocks within the factory can weaken communication signals, creating radio shadow areas that impede information exchange. Consequently, accurately determining the radio communication coverage range is crucial. To address this issue, a Radio Environment Map (REM) can be used to provide information about the radio environment in a specific area. In this paper, a technique for estimating an indoor REM usinga mobile robot and machine learning methods is introduced. The mobile robot first collects and processes data, including the Received Signal Strength Indicator (RSSI) and location estimation. This data is then used to implement the REM through machine learning regression algorithms such as Extra Tree Regressor, Random Forest Regressor, and Decision Tree Regressor. Furthermore, the numerical and visual performance of REM for each model can be assessed in terms of R2 and Root Mean Square Error (RMSE).

Prediction of Acoustic Performance of Sound Barrier Using Multiple Random- Point Impact (임의의 다중 점가진을 이용한 흡차음재의 성능 예측)

  • 신재성;강연준
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.877-881
    • /
    • 2001
  • In this paper, a model is developed that can predict insulation performance of sound barrier systems under the action of multiple random point impact. The predicted results are compared with the measured results obtained by using APAMAT II. The results show the error due to the difference between experimental environment and theoretical assumptions. The model is needed to be improved to obtain better agreement between predicted and measured results.

  • PDF

Security Improvement of Authentication Method Using Transfer Agent in USN

  • Cho, Do-Eun
    • International Journal of Contents
    • /
    • v.7 no.4
    • /
    • pp.35-43
    • /
    • 2011
  • USN is a technology to detect human external environment. It is an important factor in buildinga ubiquitous computing environment. In this thesis, an authentication method was proposed to allow the sensor nodes, which have weak computing operation capability, to safely communicate with each other in USN and guarantee the anonymity of users for their privacy. In the proposed authentication method that takes into account the characteristics of sensor network, sensor nodes based on a symmetric key algorithm do not transfer keys directly, instead, they mix the random numbers received from AS to generate keys necessary for communications, having a master key and a pseudo-random number generator.In addition, in this thesis, TA was adopted to minimize the leakage of users' information, and a scheme through which virtual IDs received from AS are delivered to sensor nodes was applied to improve anonymity.

A Study on the Vibrational Environment Test of KSLV-1 Demonstration Satellite (한국형 위성 발사체 성능 검증위성의 진동환경에 관한 연구)

  • Seo, Hyun-Suk;Kim, Hong-Bae;Woo, Sung-Hyun;Chae, Jang-Soo;Oh, Tae-Sik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.966-970
    • /
    • 2005
  • On the basis of the development of KSLV-1, KoDSat was designed and manufactured to demonstrate the performance of KSLV-1. KoDSat is exposed to a severe vibrational environment at launch. The structural reliability of KoDSat has to be verified using vibrational test. The structural compatibility and verification of components between analysis and test can be proved using environmental vibration test. In this paper, we review the structural characteristic of thruster control unit for a space launch vehicle and design TCU housing using mathematical model. In order to verify the structural compatibility and reliability, half-sine shock, random and sing sweep vibration test was performed. Especially, sing sweep vibration test result is compared with analysis result and mathematical model is verified.

  • PDF

Finite Source Queueing Models for Analysis of Complex Communication Systems (복잡한 통신 시스템의 성능분석을 위한 유한소스 대기 모형)

  • Che-Soong Kim
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.26 no.2
    • /
    • pp.62-67
    • /
    • 2003
  • This paper deals with a First-Come, First-Served queueing model to analyze the behavior of heterogeneous finite source system with a single server Each sources and the processor are assumed to operate in independently Markovian environments, respectively. Each request is characterized by its own exponentially distributed source and service time with parameter depending on the state of the corresponding environment, that is, the arrival and service rates are subject to random fluctuations. Our aim is to get the usual stationary performance measures of the system, such as, utilizations, mean number of requests staying at the server, mean queue lengths, average waiting and sojourn times. In the case of fast arrivals or fast service asymptotic methods can be applied. In the intermediate situations stochastic simulation Is used. As applications of this model some problems in the field of telecommunications are treated.