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This paper deals with a First-Come, First-Served queueing model to analyze the behavior of heterogeneous finite source

system with a single server. Each sources and the processor are assumed to operate in independently Markovian environ-

ments, respectively. Each request is characterized by its own exponentially distributed source and service time with param-

eter depending on the state of the corresponding environment, that is, the arrival and service rates are subject to random

fluctuations. Our aim is to get the usual stationary performance measures of the system, such as, utilizations, mean num-

ber of requests staying at the server, mean queue lengths, average waiting and sojourn times.

In the case of fast arrivals or fast service asymptotic methods can be applied. In the intermediate situations stochastic

simulation is used. As applications of this model some problems in the field of telecommunications are treated.

Keywords : Finite Source, Queueing Communication System, Markov-Modulation, Random Environment, Fast Arrival, Fast

Service.

1. Introduction

Performance modeling of recent computer and communi-
cation system has become more complicated as the size
and complexity of the system has increased, (see Haverkort
[5])- One of the measures of greatest interest is the dis-
tribution of the time to the first system failure. It is
well-known that the majority of the problems can be treat-
Since the fail-
ure free operation time of the system corresponds to so-

ed by the help of Semi-Markov Processes.

journ time problems, we can use the results obtained for
SMP.If the exit from a given subset of the state space is a
"rare"event, that is it occurs with a small probability it is
natural to investigate the asymptotic behavior of the so-

that Gertsbakh [4]
Kovalenko [6]. Realistic consideration of certain stochastic

journ time in subspace, see and

systems, however, often requires the introduction of a ran-
Markov
Modulation, where system parameters are subjected to ran-

dom environment, sometimes referred as to
domly fluctuations or bursts. This situation may be attrib-
uted to certain changes in the physical environment such as
weather, or sudden personal changes and workload alter-
ations. Gaver et al. [3] proposed an efficient computational
approach for the analysis of a generalized structure involv-
ing finite state space birth-and-death processes in a Mark-
ovian environment.

This study deals with a First-Come, First-Served (FCFS)

queueing model to analyze the behavior of heterogeneous
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finite-source system with a single server. The sources and
the server are supposed to operate in independent random
environments, respectively, allowing the arrival and service
processes to be Markov-modulated ones. Each request is
characterized by its own exponentially distributed source
and service time with parameter depending on the state of
the corresponding environment, that is, the arrival and serv-
ice rates are subject to random fluctuations. Our aim is to
get the usual stationary performance measures of the sys-
tem, such as, utilizations, mean number of requests staying
at the server, mean queue lengths, average waiting and so-
journ times. The main problem is that the state space of
the undetlying continuous time Markov chain will be very
large, so we have the state space explosion problem. To
avoid it in the case of "fast"arrival or "fast"service sit-
uations asymptotic methods can be applied. In the inter-
mediate situations stochastic simulation is used.

This study generalizes the results of Sztrik and Rigo
(10] where assuming “fast” arrivals the sources are homo-
geneous and the whole system is governed by two random
environments. In the case of "fast" service it extends the
results of Sztrik [8] where the request are heterogeneous
and arrival and service rates are depend on the state of
two governing Markov-chains, respectively. The technique
used here is similar to the one applied in Sztrik [8], [9],
[10] and closely related to the theoretic investigations of
Anisimov [1-2].

2. The Queueing Model

Consider a finite-source queuing system with N hetero-
gencous sources and a single server. The sources and the
server operate in independent random environments. The
environmental changes are reflected in the values of the
access and service rates that prevail at any point of time.
The main objective is to adapt these parameters to respond
to random changes effectively and thus maintain derived
level of the system performance.

Source Pis assumed to operate in a random environ-

ment governed by an ergodic Markov chain (é(’)fzo) with

state space 1.2.A ,,) and with transition density matrix

(p)
@iy

: [ o= (r) _— (p)
lp,_]p—laA 3rp)ajpjp —zaipk
ki,
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Whenever the environmental process &, @ s in state /
the probability that the source generates a request in the
time interval (.£+h) is ’lp(’}»e)*"(h), p=LA,N_ Each request
is transmitted to a server where the service immediately
starts if it is idle, otherwise a queueing line is formed.
The service discipline is FCFS. The server is also sup-
posed to operate in a random environment governed by an
Markov chain  &(0.120) " with state

ergodic space

(L2A 7)) and with transition density matrix.

{N+1) . . — (N+1) - (N+1)
{ainuj.v»l’lN"'l’jN” - l’A sy a"/vujml - Zai,v+1" J

k#iy
Whenever the environmental process €,0.20) is in
state {» the probability that the service of request P is

in the time interval Ge+h) is Mlipelo® it 4 given
source has sent a request it stays idle and it cannot gen-
erate another one. After being serviced each request in-
volved here and the random environmental are supposed to
be independent of each other.

In practical applications it is very important to know the
distribution of time until the server becomes idles, which is
actually the busy period of the processor, or the dis-
tribution of time until the number of requests staying at
the service facility reaches a certain level. So that in the
following we will use two special situations, namely,
"fast"arrival and "fast"service assumptions to get the above
mentioned distributions, respectively.

2.2 Fast Service Case

Let us consider the system under the assumption of “fast” ar-
rivals, ie., Ab,.)> = a5 € 0 and H» (izv+|75)= M, (i:v+1),
For simplicity, let /lp(ip,e)=).p(ip Ve, p=1A N | Denote
by Yc(?) the number of requests staying in the sources at
time ¢, and let QV-D=inf{:¢20,Y,()=N/Y,(O)<N-1}
that is, the case when the server becomes idles, i.e.
Q.(N-Dis the busy period length of the server, or pro-
cessor. Denote by oliysinsA siysina: OikikyuA ky) the
steady-state probability that random environment . ,,. is in state

r, ., there is no request in the source and the

order of their arrivals to the server is (knkzaA Sk )

Similarly, denote by Lol iy Lk, A ky) the
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o h . P
steady state probability that P" random environment is in

state ’p , P=LA ,N+1  source kyis generating a new re-
quest and the order sources sent their requests in the order

(klakz ’A ’kN ) Clearly, (kl ’kz A ’kN )G V}\IIV—HI , S§= 1’2

VN—s+l .
where ¥ denotes the set of all variations of order

N-s+1 of elements LA ,N  Now we have:

Theorem 1. For the system in question under the abave
assumptions, independently of the initial state, the dis-

tribution of the normalized random variable " Q(N-D)

converges weakly to an exponentially distributed random

variable with parameter.

’,

A=SA S Y 2 G iy kA k)

B=l iva=tk kA ky BV

Hy, () My, (iyy)
x . x . - x
A () A () + A, (lkz)
Ak,v (iN+l )

1
x —
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Where

N+t B T

D=3 Tx,(iA iya:0:k A k)

p=t jp=ti=t (24
ip2ip

N+!
‘z a'?
q=1 lqi

Proof. 1t is similar to the one used in Sztrik[9,10] and
due to the limited page numbers only the main parts are
discussed. Let us introduce the following stochastic process
Z,O=EON LT OBON By), where (BON By )
denote the indices of the messages in order of their arrival

(p)
%, )y

X

+ Uy (Evn ))2

at the processor. It is easy to see that (Z.(£),£20)js a
multi-dimensional Markov Chain with rather complex state

space
E=(GsipoA iy 183 hA Ry sl =LA P,
p=LA ,N+L(k,A k, )€V’ ,s=0,A ,N)

Where %0 ={0} by definition. Furthermore, let

<am> = ((il’i2’A ’iN+l ZS;klsA ’kN—S)’ip :I,A ,f’ ’
P=LA N+L(k,A K, ) eVa™ =0, ,m)
be a subset of the states.

of

Let us denote by & s((am >)the steady state probability of
exit from (a,,,)’ that is

g£(<am>)= Y26 Y, )

eX, g

Hence our aim is to determine the distribution of the
first exit time of Z.) from (@), provided that

Z,(e{e,) . 1t can easily be verified that the transition
probabilities for the embedded Markov chain are

pg ((ll ’A biN+1 : s;kl ’A 7kN—s)’(il ’A ’jp’A 9iN+| .S kl’A kN—s))
{p)
- ail";.l'
Vol iy, 53k ALKy ()

DA S A Vi A 5L K AR )

_ ﬂk, (iN+])
yg(i\ ’A ’iN+1 :s;kl 9A 5kN—s)

,fors=0A N, p=1LA ,N+1

,fors=0,A N-1

PGt A, ) A g 5L KAk )

_ ﬂ"f:v,, (ikN_: Ye
VLA iy s kA )

,Jors=LAN

As €0 implies

P (oA iy O R A KA A i 0 KA ) )
»
@,

aV +A +a™?

iy vt

—, p=LA ,N+1
+14 ()

PGt S A A5 R,
=(Xl)a fors:O,A Mp:LA ,N+1

Po G iy Ok A K )AL K A kN))

lukl (iNH)

=0 (N ;
a; +A +aq, +4, Q)

iyl

, P=LA,N+1

n A i sk A ko VA o s st kA kL V)
_ # Gp)E
Z’lp(ip)

Pk Ak

A+0(), s=LA,N-1

The probabilities
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Ty (il’iZ’A syt Lk Ry, A ’kN—I)
i, =LA 7, p=LA N+LA k)l s =0

satisfy the following system of equations

o oo s Ja: O A ey )
:ZEO(I.]’jzaA ,jN+| : O;kl,A ’kN)
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+7[0(j,,j2,1\,jN+l:l;kl,A,kN_l) ...................................... (1)
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=7ty (jl’jZ’A s I - Gk A ’kN—-I)
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To apply the resuits of Anisimov [l, 2] we need the
solution of (1), (2) with normalizing condition

N+l 7p

I DU iy OuA Ky

p=1i,=1(ky, A ky)

70 (A s ey A K =1 3)

Suppose that we have this solution. Then we get

n ™l

g( ““>)=Emm/\ N, S ELA i Lk A k)

x lukz (iN+l) % /uk3 (iN+l)
A ) A G )+ A4, G)
ﬂ'k,\, (iN+l)

B G)A A G ) (+o()

Taking into account the exponentially of Bl b Sk AK)
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for fixed ©® we have
Eexp{ie" Or, (i1 A iy, Ok A Ky )}
. i®
£ i 1+0(D)

Q)] :
a; +A +aq, +H, (iyn)

=1+

N4tEN

Notice that 5. =¢" and therefore we immediately get

that &"Q.(m converges weakly to an exponentially dis-
tributed random variable with parameter

A= i‘,A f Z (A iy, Lk A k)

W=l = (kg kg Ak Y

y Hy, (na) » Hy, (ina)
A Ge) A )+ A )
% ﬂ’kﬁ (iNH ) __1_
/1"1 (ik,)+A +ﬂ"‘~4 (ikzv-l) D o @)
Let m=N-1 from which our statement immediately

follows. It should be noted that this asymptotic approach
considerably reduces the calculations since to solve the sys-
tem of equations (1), (2) is much easier than to get the

stationary distribution of (Z.@),720) and system of sto-
chastic relations concerning to its sojourn time in (@),
Notice, if HpUw)=Hina), P=LAN 3 closed form sol-
ution can be obtained.

Denoted by (”fpp ’,ip=1,A,rp) the steady state distribution
of the governing Markov chains (5,)120) p=LA,N

respectively. It can be verified, that the solution of (1), (2)
is

Ty (jl’jZ’A s Jyn: GkL,A ’kN)

= Bz A 7 )@l +ad) +A+al + )

na A Jah2 inatinn

Ty (jl’jZ’A s Jwat LhA 5kN—])
= B(”;:),A ) )

S

Where B is the normalizing constant, i.e.
! YA S0 (N+1)
. +
E—N!ZA 2 AT
h= N =

1 2 N+l .
x(a) +a?) +A+al"? +2djy.))
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Thus from (4) it follows that & SXN-1) converges
weakly to an exponentially distributed random variable with
parameter.

1 & vl 2(”2”1\ ”;\f:l))ﬂ(iNH)

Ci=l iy =l (kky Ak eV
Hy, (ina)
X - X
A G)

Hy, (n.)
; —xA
A )+ A, (L)
x ﬂ'kN (iN-H)
/1/(, (ikl Y+A + ,?,kN_] (ikN—I ) R —— (5)

Thus from (5) we get that the busy period length of the
server is asymptotically an exponentially distributed random
variable with parameter.

N-T1 5 nal

S 23 YD 2 T O

Sohsl iy = kA by eV

y My, Gysy) » Hy (iya)
’11(1 (ikl ) ﬂ‘kl (ik, )+ ’?'kZ (ikz )
A, Gya)

x
A G )N + 2 G, )

In the case when there are no random environments,

that is Miva)=th A,G)=4, i, =LA, p=LAN = fom

(6) we get
N-1
eV A = & ' y_ﬂ_ H
N oniers A A + A,
« H
A, +A +gk ............................................................ )

Finally, for the totally homogeneous case from (7) we
obtain

N-1 1 H i

A =
(N=-D! (/&)

&

The utilization U.of the receiver, which is the long run
fraction of time during which it is busy, can be given by

-1
1 1
Ur :8N—IA(€N—1A+IJ

Where I denotes its idle period length.

2.2 Fast Service Case

In this section let us assume that the service is "fast",
that is H,0va.E)> = as €0 and A,6,.e)=14,6,),
For simplicity, let #, G 8)=4, Gy Ve, p=LA N
Our aim is to get the distribution of time until the number
of requests staying at the service facility reaches a certain

level. In this case denote by Y:{#) the number of requests
staying at the service facility at time f, and let

Q, (my=inf{t:120,Y,()=m+1/Y,(0) < m}

The following theorem has a practical importance in the

field of reliability theory where Ye(?)can be interpreted as
the failure free operational time of the system.

Theorem 2 For the system in question under the above
assumptions, independently of the initial state, the distri-

bution of the normalized random variable €" 2:(m) con-
verges weakly to an exponentially distributed random varia-

ble with parameter.

ll (') N+l H A’k\ (ilrJ )
A=A (Hngm] s=t
=1

ip n
= iva =tk kg A kg BV p=l 1
war=t ki ks NEVR I‘l'k, (1N+l)
s=1

Proof 1t is similar to the one used in C.SKim &
Sztrik[8] and the above analysis, thus it is omitted.

2.3 Stochastic Simulation

As it can be seen the above discussed two special cases
result rare events, since in both situations we get events of
very small probabilities. It is also well known that simu-
lation of rare events are quite complicated and time
consuming. Even so, the validation of the asymptotic re-
sults by simulation is in progress. In the intermediate sit-
uations, that is when the arrival and service rates are in
the same scales for moderate source size under different
service disciplines, a toll has recently been developed, see
Sztrik [11] by the help of which not only exponentially
distributed source and service times, but Coxian ones can
be investigated. By using the Law-Carson algorithm, see



Law and Kelton [7] confidence intervals for the main per-
formance measures are obtained, such as, utilizations, mean
number of requests staying at the server, mean queue
lengths, average waiting and sojourn times.

3. Conclusions

In this paper, we have presented as a queueing model to
analyze the behavior of a First Come First Service hetero-
gencous finite source computer and communication system
with a single processor. The system operates in Markovian
environments and the messages arrival fast and service fast.
An asymptotic approach has been provided to obtain the
distribution of the time to the first system failure.
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