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Randomness exists in engineering. Tolerance, assemble-error, environment temperature and
wear make the parameters of a mechanical system uncertain. So the behavior or response of the
mechanical system is uncertain. In this paper, the uncertain parameters are treated as random
variables. So if the probability distribution of a random parameter is known, the simulation of
mechanical multibody dynamics can be made by Monte-Carlo method. Thus multibody dyna-
mics simulation results can be obtained in statistics. A new concept called functional reliability
is put forward in this paper, which can be defined as the probability of the dynamic parameters
(such as position, orientation, velocity, acceleration etc.) of the key parts of a mechanical multi-
body system belong to their tolerance values. A flexible mechanical arm with random
parameters is studied in this paper. The length, width, thickness and density of the flexible arm
are treated as random variables and Gaussian distribution is used with given mean and variance.
Computer code is developed based on the dynamic model and Monte-Carlo method to simulate
the dynamic behavior of the flexible arm. At the same time the end effector’s locating reliability
is calculated with circular tolerance area. The theory and method presented in this paper are
applicable on the dynamics modeling of general multibody systems.
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1. Introduction

Multibody dynamics has wide application in
engineering, such as space flexible mechanical
arm, flexible linkage, antenna of satellite etc. In
these systems, coupling between elastic defor-
mation and rigid body movement usually exists,
thus the dynamic behavior becomes complicated
(Huston, 1991 ; Liu, 2000). Conventional dyna-
mic methods usually treat such systems as deter
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mined, which means the dynamic parameters are
constant without variation. Thus the results of
dynamic calculation are also determined. But
this isn’t the truth. In practice, the geometric para-
meters of a mechanical system such as length are
uncertain because of design tolerance, assembly
error, wear and the material parameters such as
density are also uncertain because of working
temperature and material ununiformity. Thus,
dynamic response of mechanical systems is also
uncertain. In order to describe the exact dynamic
behavior, it is necessary to take these uncertain
parameters into account. These uncertain para-
meters can be classified to probabilistic para-
meters and fuzzy parameters and the probabilistic
parameter can be further divided into random
variables, random process and random field. In
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this paper, random variable will be discussed
mainly. As an illustrative example, a flexible
mechanical arm with probabilistic parameters is
studied in this paper. Base on Kane’s equation,
dynamic model with “dynamic stiffness” is esta-
blished and Monte-Carlo method is used for
simulation. The simulation results are given in
terms of statistics and locating reliability of the
end effector is also calculated.

2. The Probabilistic Parameters
and Functional Reliability
of General Multibody Systems

In this section, the classification of probabi-
listic parameters, Monte-Carlo method and the
concept of functional reliability will be discussed.

2.1 Classification of the probabilistic para-
meters
The probabilistic parameters of general multi-
body systems can be classified as follows:

(1) Load: The load of mechanical multibody
systems is usually uncertain, For example, the end
effector of the flexible arm can be used to grip
objects and usually the weight of the objects are
probabilistic.

(2) Material : The density, elastic modulus,
poisson’s ratio, damping, coefficient of friction
of mechanical multibody systems may be probabi-
listic because of manufacture, working conditions
etc.

(3) Geometric parameters : The length, width,
thickness, cross section area inertia moment and
other geometric parameters of mechanical multi-
body systems may be random due to tolerance,
assembly, wear etc.

(4) Initial conditions and boundary conditions :
The randomness of material and geometric para-
meters will be discussed mainly in this paper

2.2 Simulation by Monte-Carlo method

By means of numerical simulation, Monte-
Carlo method can solve mathematics and engi-
neering probabilistic problems effectively. Gener-

ally speaking, there are 3 steps to make Monte~
Carlo simulation.

(1) Sampling of probabilistic parameters :
Usually, the distribution function of the probabi-
listic parameters is assumed as known condition.
By computer code such as MATLARB, it is easy to
get random numbers satisfying the distribution
function such as Gaussian distribution, uniform
distribution.

(2) Calculating the response of every sample :
In this step, the dynamic equations are solved
according to the value of sample. This process is
the same as the determined method and each
sample simulation can be called an experiment.
This step can take much calculation time because
there may be thousands of or even millions of
samples.

(3) Calculating the simulation results in sta-
tistics. Through the first 2 steps, many sample
values of the result or response are calculated and
these numbers are used to calculate the mean,
variance and even the distribution function of the
simulation result.

2.3 Functional reliability of mechanical

multibody systems

Reliability is usually related to fatigue, fracture
and life of mechanical systems conventionally.
But with the development of high precise device
in robot, machinery and space engineering, the
concept of functional reliability of mechanical
mulibody systems is put forward and becomes
more and more important (Schneider, 1994 ; Rao,
2001).

Functional reliability is the reliability of mec-
hanical system fulfilling its scheduled motion
mission. There may be some restrictions on the
location, orientation, velocity and trace of some
key pats of the mechanical system. If a tolerance
value or area or space is defined at some time
or position, then the function reliability can be
calculated. Figure 1(a) is the schematic sketch
of a two-arms manipulator and (b) is the loca-
tion and orientation requirement of some special
working points. The ideal location and orienta-
tion of these points may be A (0, 1, 180°), B(0.35,
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(b) Requirement of

(a) Schematic
sketch
Fig. 1 Sample of functional reliability

points

1, 135°), C(0.7, 1, 90°), D(1, 1, 45°), E(1, 0.7,
0°), F(1,0.35, —45°), G(1, 0, —90°). If tolerance
values or areas are defined for these points, then
the locating or orient reliability can be calculated.
In Figure 3, a circular tolerance area is defined
for the end effector’s locating reliability at the
time of 2 second. If the end effector is in this area
it is reliable else it is a failure. So the locating
reliability can be expressed as

_Ns
RL_ NT (1)

Where, Ns is the number of successful experi-
ments and Ny is the total number of experiments.

3. Dynamic Modeling of a Flexible
Mechanical Arm

In this section, the deformation description of a
cantilever beam and dynamic model of a flexible
mechanical arm will be introduced. .

3.1 Deformation kinematics of a cantilever
beam

In order to simplify the dynamic analysis, some

(1) deformation of the

beam is elastic, small and in the paper plane

assumptions are made :

(2) it is a Euler-Bernoulli beam (3) the axial line
can not be elongated or compressed.

In Figure 2, O-x1x2x3 is the local coordinate
fixed on the beam and b, b.;, bs are unit vec-
tors. The axial line of the beam is in coincidence
with Ox1 when there is no deformation. Point P
moves to Point P* after deformation.

According to the assumptions (1)-(3) and
geometrical deformation constraint method and

Fig. 2 Deformation of a cantilever beam

by modal condensation (He, 2003), the physical
coordinates can be transferred into modal coor-
dinates. Thus the deformation can be expressed

as:
_ Guz 6 t)
———/ <—> dé=— Huq 4 (2)
u2=¢iqi (Za]: 3 "",N>
1d¢ ) dg;(8)
Hy= [ S0 SR ds )
(Z" j:l’ 2’ ..’, N)

Where #; and u» are the deformation of point
Pin Ox; and Ox; direction respectively. ¢; (i=
1, 2, ---, N) and g; are the No.i modal shape
function and modal coordinate. N is the total
number of modals.

3.2 Dynamic analysis

A planar flexible mechanical arm is shown in
Figure 3. L is the length, % is the width, %, is
the thickness, A=/Mh, is the cross—sectional
area, o is the density, EI is the bending stiff-
ness. One end of the arm is fixed on an electric
motor and the other end is equipped with an end
effector. r is the driving torque and [, is the
moment of inertia of the electric motor. & is the
angular displacement of the arm. OXiX; is the
inertial coordinate system and Oxix; is the local
coordinate system fixed on the arm.

Assume that rp- is the position vector of P*,
® is the angular velocity vector of the beam. Vp
is the velocity vector of P*, aps is the accelera-

tion vector of P*, ¢ is the angular acceleration
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Fig. 3 Planar flexible mechanical arm system

vector of the beam. These vectors are expressed

as:
r =<x—LH~q'q->b +¢iq:b (4)
* 2 gy iy; 1 141 2
w=9b3 (5)
Veo=—(¢:q:0+Hi;G:q5) b
X . 1 - 6
+( 20+ pudi—y 0 Hoaias ) b (©)
‘_(xt9'2+¢i4ié+2¢iq.i0._%€HijQi(Ij>bl
+ (+ Hijags+ Higgs) it (x0+ i) b (N
‘|”( _¢i4i(92_%9Hij4iqii“26.Hijq@> b.
€=(§b3 (8)
Take 8, ¢1, -+, v as generalize speed and the

partial velocity vectors are listed in Table 1.
The generalize inertia force of the infinitesimal
section where point P* located is :

. Ve
dF} oAdxap 20 (9)
dF;,=—pAdzar- 52 (i=1,2, - N) (10)
The generalize inertia force of the electric motor
is
w6 =—Jne* 35 (11)
Fﬁqf=—fhe-§7“’ (=12, N) (12)
The generalize drive force is
Fo=1(t) (13)
Fo=—Kuq; (j=1,2,-, N) (14)

Table 1 Partial velocity vectors

VP‘ [
1
g —¢i4ib1+<x_7Hij(Iin>b2 bs
(4, /=1, 2, -, N)
q: —Hijq:b1+ ¢:b, 0
(=1, 2, -, N) (i, j=1,2,+, N)

Where Kj;; is the i-row and j-column element of
the modal stiffness matrix-K.
The orthogonality of the matrix K gives:

d*¢. &¢; {wz =]
Kij= /E[dz dxzdx 0 its (15)

where @; is the i-th natural frequency of the
beam.

3.3 Dynamic equation

Based on Kane’s equation (Kane, 1985), the
governing equation of the flexible mechanical arm
can be written as :

Fo+ [dF3+F=0
L (16)
Fo+ [dF4+Fia, =0
L

Substitute (9)~(14) in (16), make some simpli-
fication, and take the random variables into ac-
count, the equation (16) becomes :

<]h+%ﬁﬁf3>§+g<ﬁﬁ'£i x¢idx>q:,»=r
(FA[" xpoar)btioth-9a (7
([ pAxHpdx )3:6°=

2

where the symbol “~” represents the stochastic

parameters.

4. An Illustrative Example

The schematic sketch of a flexible mechanical
arm system is shown in Figure 3. The density,
length, width and thickness of the flexible mecha-
nical arm are chosen as random variables. Based
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on central limit law (Li, 1996), they are assumed
to satisfy Gaussian distribution. Table 2 is the
mean and variance of these parameters.

Table 2 Mean and variance

Stochastic | Density | Length | Width | Thickness
.parameter | (kg/m®) (m) {(m) (m)
mean 78%10%| 0.53 0.032 | 8.5%X10™*
variance 100 |1X107%|1x1078] 1x1071°

Module 1:Basic
Parameters Input

r

Module 2: Preporcess of
random variables

Y

Module 3 : Determined colculation

Are All The Samples
Finisned ?

Module 4: Postporcess of results in
statistics

Fig. 4 Flow chart of the computer code
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Fig. 5 Mean of the angular displacement

J»=1.46 X 107% kgm?, Elastic modulus is 2.22 X
10 N/m? and r=1—¢, where ¢ is the simula-
tion time. In order to calculate the locating re-
liability at £=2s, circular tolerance area is de-
fined. The center of the circle is A (Xia, Xzea) and
the radius is Ra. X14=—0.025 m, X54=0.5260 m,
R4=0.015m.

Computer code is developed by MATLAB
(Figure 4) and in order to calculate the in-
fluence of each single stochastic parameter the
other stochastic parameters can be treated as de-
termined. In this paper, the density, length, width
and thickness are treated as random variables
at the same time (1000 samples). The result of
angular displacement, angular velocity, end point
deformation and end point deformation velocity
are given in Figure 5~12.

For the circular tolerance area, the formula
to calculate the locating reliability of the end
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Fig. 6 Variance of angular displacement
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Fig. 7 Mean of angular velocity
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Fig. 8 Variance of angular velocity
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Fig. 9 Mean of end point deformation
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Fig. 10 Variance of end point deformation

effector is:

Ri=P(/(Xic— Xia) *+ (Xoc—Xza) 2 < R4) (18)

Based on the 1000 samples, the locating reliability
at =25 is R.=99.7%.
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Fig. 11 Mean of end point deformation velocity
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Fig. 12 Variance of end point deformation velocity
S. Conclusion

(1) Stochastic dynamic model can solve engi-
neering problems more effectively and compre-
hensively compared to conventional determined
methods. The dynamic response is usually in the
form of statistics.

(2) Based on the stochastic dynamic model,
function reliability can be calculated and this
kind of reliability may be used to verify the mo-
tion function or accuracy of mechanical systems.
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