• Title/Summary/Keyword: railway vibration

Search Result 956, Processing Time 0.027 seconds

Field Tests Investigating the Ground Borne Vibration Induced by Underground Railway Tunnel (터널 내 열차주행으로 인한 지반진동 현장측정시험)

  • Ahn, Sung-Kwon;Bang, Eun-Seok;Lee, Bae
    • Journal of the Korean Society for Railway
    • /
    • v.13 no.2
    • /
    • pp.208-213
    • /
    • 2010
  • This paper describes the instruments used, and the test procedures adopted, and the findings obtained from a research project aiming to investigate, via full-scale field tests, the ground borne vibration caused by underground railway tunnel constructed in hard rock. The ground borne vibration induced by high-speed trains (i.e. the Korea Train eXpress (KTX) services) with a speed of approximately 200km/hr was measured inside the borehole constructed in the close proximity to the KTX tunnel using 3-component borehole seismographs in order to investigate the wave propagation of ground borne vibration. This paper also discusses the limitation associated with the current practice of measuring ground borne vibration using conventional borehole seismograph.

Field performance evaluation of a Floating Slab Track to Isolation System (플로팅 슬래브 궤도용 방진시스템 현장성능 평가)

  • Park, Sang Gon;Koo, Hyung wook;Han, Hyun Hee;Chun, Chong Keun;Jang, Seung Yup
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.04a
    • /
    • pp.352-357
    • /
    • 2014
  • Recently the construction of stations under railway lines and railway sections passing through central area of cities are increasing, calling for an urgent establishment of countermeasures against railway vibration and its subsequent second-phase noise. Of technology developed up to now, the most efficient countermeasure is the floating slab track, a track system isolated from the sub-structure by springs. Developed in this study, anti-vibration device for floating slab track (HLRM-High Load Rubber Mount) Haman station affiliated to the primary measurement was conducted in October 2012, one year after the second measurement after 2013 to be carried out in November and we want to change that. It is expected to raise awareness for the need of technology self-support and to make a meaningful contribution to mitigating vibration and noise produced by the next-generation high-speed railway.

  • PDF

Seismic vibration control for bridges with high-piers in Sichuan-Tibet Railway

  • Chen, Zhaowei;Han, Zhaoling;Fang, Hui;Wei, Kai
    • Structural Engineering and Mechanics
    • /
    • v.66 no.6
    • /
    • pp.749-759
    • /
    • 2018
  • Aiming at widely used high-pier bridges in Sichuan-Tibet Railway, this paper presents an investigation to design and evaluate the seismic vibration reduction effects of several measures, including viscous damper (VD), friction pendulum bearing (FPB), and tuned mass damper (TMD). Primarily, according to the detailed introduction of the concerned bridge structure, dynamic models of high-pier bridges with different seismic vibration reduction (SVR) measures are established. Further, the designs for these SVR measures are performed, and the optimal parameters of these measures are investigated. On this basis, the vibration reduction effects of these measures are analyzed and assessed subject to actual earthquake excitations in Wenchuan Earthquake (M=8.0), and the most appropriate SVR measure for high-pier bridges in Sichuan-Tibet Railway is determined at the end of the work. Results show that the height of pier does not obviously affect the performances of the concerned SVR measures. Comprehensively considering the vibration absorption performance, installation and maintenance of all the employed measures in this paper, TMD is the best one to absorb vibrations induced by earthquakes.

The Development of a Floating Slab Track to Isolation System (플로팅 슬래브 궤도용 방진시스템 개발)

  • Park, Sang Gon;Koo, Hyung Wook;Han, Hyun Hee;Chun, Chong Keun;Jang, Seung Yup
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.636-641
    • /
    • 2013
  • Recently the construction of stations under railway lines and railway sections passing through central area of cities are increasing, calling for an urgent establishment of countermeasures against railway vibration and its subsequent second-phase noise. Of technology developed up to now, the most efficient countermeasure is the floating slab track, a track system isolated from the sub-structure by springs. Unfortunately, however, the system design technology and technology for key components have not yet developed in Korea. As such, in this study, the analysis and design technology of floating slab track and its vibration isolator technology can be achieved. In preparation for future demands, it is expected to raise awareness for the need of technology self-support and to make a meaningful contribution to mitigating vibration and noise produced by the next-generation high-speed railway.

  • PDF

Stopper equipped with a Low Vibration Floating Slab System Design (스토퍼가 장착된 저진동 플로팅 슬래브 시스템 설계)

  • Park, Sung-Jae;Ma, Chang-Nam;Park, Myung-Gyun;Lee, Du-Hwa
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.753-756
    • /
    • 2011
  • Recently the construction of railway sections passing the central area of cities and stations under railway lines are increasing, and then it is urgently required to take the countermeasures against the railway vibration and the second-phase noise radiated from it. The most efficient countermeasure, out of technologies developed up to now, is the floating slab track which is the track system isolated from the sub-structure by springs. In other countries, the source technologies for anti-vibration design and vibration isolator - one of key components - have been developed and many installation experiences have been accumulated. However, in Korea, since the system design technology and technologies for key components are not yet developed, the foreign system are being introduced without any adjustment, and the key component, vibration isolator, depends on imports. In this study, analysis on floating slab system installed rubber mat and stopper is carried for the examination on the safety of floating slab system.

  • PDF

Nondestructive Evaluation of Railway Bridge by System Identification Using Field Vibration Measurement

  • Ho, Duc-Duy;Hong, Dong-Soo;Kim, Jeong-Tae
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.6
    • /
    • pp.527-538
    • /
    • 2010
  • This paper presents a nondestructive evaluation approach for system identification (SID) of real railway bridges using field vibration test results. First, a multi-phase SID scheme designed on the basis of eigenvalue sensitivity concept is presented. Next, the proposed multi-phase approach is evaluated from field vibration tests on a real railway bridge (Wondongcheon bridge) located in Yangsan, Korea. On the steel girder bridge, a few natural frequencies and mode shapes are experimentally measured under the ambient vibration condition. The corresponding modal parameters are numerically calculated from a three-dimensional finite element (FE) model established for the target bridge. Eigenvalue sensitivities are analyzed for potential model-updating parameters of the FE model. Then, structural subsystems are identified phase-by-phase using the proposed model-updating procedure. Based on model-updating results, a baseline model and a nondestructive evaluation of test bridge are identified.

Vibration Transmission of Railway Floor Structure due to Connecting Materials (연결재료에 따른 철도차량 바닥구조의 진동전달)

  • Shin, Bum-Sik;Chun, Kwang-Wook;Choi, Yeon-Sun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.11
    • /
    • pp.1320-1325
    • /
    • 2009
  • The sources of the vibration of railway vehicles in the cabin are usually bogie, axle, and wheel. The vibrations are transmitted through the floor structures of railway vehicle. The floor structure is the combination of bottom plate, plywood, and rubber. In this research the vibration transmission is measured experimentally and analyzed numerically to find the transmission characteristics of the vehicle floor structures. The result shows that the vibration characteristic of soft rubber is better than hard rubber or wood as the connecting material between the bottom plate and the plywood.

Stability of Punching Shear and Analysis Fatigue Stress of Joint of Low Vibration Floating Slab-Anti Vibration equipment (플로팅 궤도 슬래브-방진장치의 펀칭전단 안정성 및 피로응력 해석)

  • Park, Sung-Jae;Ma, Chang-Nam;Park, Myung-Gyun;Lee, Du-Hwa;Jo, Su-Ik
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.1460-1463
    • /
    • 2010
  • Railway has been pointed to the efficiency of transportation, rapid transit, and comfortable train ride. the construction of railway near the downtown area and station building are increasing for maximization of utilization and convenience. but the heavy of transportation and rapid transit lead to increase noise and vibration. The noise and vibration of railway may cause the civil appeal, decline in the serviceability and insufficiency of environmental standard. In this study, floating slab vibration and repeated connection of devices to support joints and fatigue stress analysis of punching shear performance review was conducted to evaluate the safety.

  • PDF

A Coupled Vibration Analysis of Railway Track System with Consideration of Contact Stiffness (접촉강성을 고려한 차량-레일계의 연성진동해석)

  • 류윤선;조희복;김사수
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.241-246
    • /
    • 1997
  • Corrugation of railway track can be caused by the various dynamic behaviors of traveling wheels and track. In this paper, the coupled vibrations of traveling wheel and railway track are analyzed as the cause of corrugations. To analyze the coupled vibration, the track supported by the sleepers and the traveling wheels are identified to the elastically supported infinite beam and the spring-mass system which runs at constant speed. The Hertzian contact spring is considered between the infinite beam and spring-mass system. The dynamic responses of elastically supported infinite beam and spring-mass system are calculated. The cause and development of rail corrugation are discussed in the view point of contact force fluctuation affected by the elastic supports and the corrugated surface profile on the track. By the obtained results, the possibilities of resonance are checked between the excitation by the corrugated surface profile and the natural frequency of contact spring-mass system. It may be thought to a development of railway corrugation.

  • PDF

Vibration Transfer Characteristics of the Reinforced Soil SRWs Under the Simulated Cyclic Train Loading (모사열차 반복하중 재하시 블록식 보강토 옹벽의 진동전달특성)

  • 고태훈;이진욱;이성혁;황선근;김정무
    • Proceedings of the KSR Conference
    • /
    • 2002.10a
    • /
    • pp.626-632
    • /
    • 2002
  • Geogrid is widely used as the reinforcement materials in railway earth structures in order to achieve efficient land utilization as well as securing safety in railway service lines in other countries. In this study, the real scale test was carried out to investigate the application of geogrid reinforced soil segmental retaining walls(SRWs) in railway. For this goal, the vibration transfer characteristics of reinforced soil segmental retaining walls was evaluated. The resonant frequencies of SRWs, vertical ground vibration in backfill and vertical/horizontal vibration at segmental units were acquired. This experimental data and analysis result can contribute to understand the vibration response behavior of SRWs.

  • PDF