• Title/Summary/Keyword: railway engineering

Search Result 2,444, Processing Time 0.03 seconds

Design and modelling of pre-cast steel-concrete composites for resilient railway track slabs

  • Mirza, Olivia;Kaewunruen, Sakdirat;Kwok, Kenny;Griffin, Dane W.P.
    • Steel and Composite Structures
    • /
    • v.22 no.3
    • /
    • pp.537-565
    • /
    • 2016
  • Australian railway networks possess a large amount of aging timber components and need to replace them in excess of 280 thousands $m^3$ per year. The relatively high turnover of timber sleepers (crossties in a plain track), bearers (skeleton ties in a turnout), and transoms (bridge cross beams) is responsible for producing greenhouse gas emissions 6 times greater than an equivalent reinforced concrete counterparts. This paper presents an innovative solution for the replacement of aging timber transoms installed on existing railway bridges along with the incorporation of a continuous walkway platform, which is proven to provide environmental, safety and financial benefits. Recent developments for alternative composite materials to replace timber components in railway infrastructure construction and maintenance demonstrate some compatibility issues with track stiffness as well as structural and geometrical track systems. Structural concrete are generally used for new railway bridges where the comparatively thicker and heavier fixed slab track systems can be accommodated. This study firstly demonstrates a novel and resilient alterative by incorporating steel-concrete composite slab theory and combines the capabilities of being precast and modulated, in order to reduce the depth, weight and required installation time relative to conventional concrete direct-fixation track slab systems. Clear benefits of the new steel-concrete composites are the maintainability and constructability, especially for existing railway bridges (or brown fields). Critical considerations in the design and finite element modelling for performance benchmarking of composite structures and their failure modes are highlighted in this paper, altogether with risks, compatibilities and compliances.

Expanding Plan Study of KRTCS-2(Korean Radio Train Control System for Conventional & High Speed Railway) (일반 및 고속철도용 한국형열차제어시스템 확대적용 방안 연구)

  • Lee, Kang-Gyoo;Choi, Jong-gwoan;Sung, Dong-Il;Yun, Hak-Sun;Park, Jong-Won;Kim, You-Ho;Lee, Nam-Hyoung;Yoo, Jong-Cheon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.3
    • /
    • pp.533-539
    • /
    • 2017
  • ERTMS/ETCS Level 2 is currently planning, making contract, constructing and operating at several lines in European well-developed railway countries different from past ten years ago, and applying extensively for purpose of its intercompatibility and operational efficiency, and economic feasibility. On the other hand, ATP system correspond to ETCS Level 1, which was domestically introduced in early 2000, has introduced, operated, and planned or constructed in national railwaynetwork, but the lines, which its improvement period is come, are being occurred starting Gyeongbu Line. Therefore, we study the consideration and construction plan by stages if LTE-R Korean Radio-based Train Control System for conventional & high-speed railway under domestic development is extensively applied as the third National Railway Network Construction Plan was announced.

Reliability Improvement Method of the Electrical Door System for the Railway Vehicles (철도차량의 전기식 출입문 시스템의 신뢰도 개선 방안)

  • Yang, Yong Joon;Lee, Hi Sung
    • Journal of Energy Engineering
    • /
    • v.24 no.1
    • /
    • pp.17-23
    • /
    • 2015
  • Electrical door system is one of the most essential items for the successful commercial operation of the railway vehicles. Nowadays, reliability values of electrical door system have a tendency to be included in technical requirements for design and manufacturing of rolling stocks. Manufacturer shall meet the reliability target values of electrical door system which is proposed by railway operator in procurement contract book. Railway operator shall approve the supplier's the reliability target values based on maintenance operation data. Railway operators are in the transition stage from the framework of maintenance interval based on time to the framework of maintenance interval based on distance. In this study, failure rates of the electrical door system currently used in railway vehicles are collected from maintenance field data. Failure rates are analyzed by using Minitab. Several kinds of plan for improving reliability are also suggested. It is necessary to keep studying on reliability prediction methodology, applying it in the field and implementing on improvement of reliability through feedback as well. Further, it will be useful for determining new maintenance policies or changing maintenance intervals for existing railway vehicles.

Development and Application of RCM Process for the Optimized Maintenance of Railway Vehicle (철도차량의 유지관리 최적화를 위한 RCM 프로세스 개발 및 적용)

  • Shin, Kun Young;Lee, Hi Sung
    • Journal of Energy Engineering
    • /
    • v.24 no.1
    • /
    • pp.10-16
    • /
    • 2015
  • Recently, RCM(reliability centered maintenance) process is introduced and applied for the planning and implementing efficient and effective maintenance system in terms of optimal rolling stock maintenance. Particularly, cost-time benefits analysis associated with the implementation of RCM for rolling stock maintenance is necessary and required for railway operator in advance. The RCM process was primarily starting from military, airplane and nuclear industries and is now adapted in railway industry for local railway operators. This paper focuses on suggesting the way of connecting the RCM process with railway maintenance activities in the railway operation field. Thus, in order to introduce and establish reliability activities, it needs to review and evaluate the maintenance environment in the organizational point of view. Based on these reviews and evaluations, various maintenance methodologies are reviewed for customizing local railway field situations and establish specific process in the application of major systems on the reliability technology. In this paper, the railway RCM process is proposed for the establishment and construction of the systematic and optimal maintenance system.

Identification of moving train loads on railway bridge based on strain monitoring

  • Wang, Hao;Zhu, Qingxin;Li, Jian;Mao, Jianxiao;Hu, Suoting;Zhao, Xinxin
    • Smart Structures and Systems
    • /
    • v.23 no.3
    • /
    • pp.263-278
    • /
    • 2019
  • Moving train load parameters, including train speed, axle spacing, gross train weight and axle weights, are identified based on strain-monitoring data. In this paper, according to influence line theory, the classic moving force identification method is enhanced to handle time-varying velocity of the train. First, the moments that the axles move through a set of fixed points are identified from a series of pulses extracted from the second derivative of the structural strain response. Subsequently, the train speed and axle spacing are identified. In addition, based on the fact that the integral area of the structural strain response is a constant under a unit force at a unit speed, the gross train weight can be obtained from the integral area of the measured strain response. Meanwhile, the corrected second derivative peak values, in which the effect of time-varying velocity is eliminated, are selected to distribute the gross train weight. Hence the axle weights could be identified. Afterwards, numerical simulations are employed to verify the proposed method and investigate the effect of the sampling frequency on the identification accuracy. Eventually, the method is verified using the real-time strain data of a continuous steel truss railway bridge. Results show that train speed, axle spacing and gross train weight can be accurately identified in the time domain. However, only the approximate values of the axle weights could be obtained with the updated method. The identified results can provide reliable reference for determining fatigue deterioration and predicting the remaining service life of railway bridges.

Development of Rail-transport Operation Control in Consideration of the Stability Variation of Railway Embankment under Rainfall (강우시 사면안전성 변화를 고려한 열차운전규제 개발)

  • 신민호;김현기;김정기
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.06a
    • /
    • pp.13-22
    • /
    • 2003
  • Train speed and infiltration of rainfall causes railway embankment to be unstable and may result in failure. Therefore, the variation in the safety factor of railway embankment should be analyzed as the function of rainfall intensity, rainfall duration, and train speed and the study is accomplished using numerical analysis program. Based on unsaturated soil engineering, the variables in the shear strength function and permeability function are also defined and used for the numerical model for evaluation of railway embankments under rainfall. As a result of the study, in order to secure the safety of train under rainfall, the variation in the safety factor of railway embankment is predicted as the function of rainfall intensity, duration time and the train load as a function of train speed. It is possible to ensure the safety of train under rainfall. Thereafter, the feasibility of the rail-transport operation control with engineering basis was established.

  • PDF

Semi-Active Vibration Control for HSR 350x (한국형고속열차 세미액티브 진동 제어)

  • Kim, Sang-Soo;Kim, Young-Kuk;Kim, Ki-Hwan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.169-173
    • /
    • 2007
  • To improve the riding comfort and to increase the speed of high-speed railway, it needs active suspension system for railway more and more. In Korea, Korean Train Express (KTX) was opened to commercial traffic 3years ago. Korea High-speed Railway (HSR 350x) was developed and succeeded 350km/h test run by Korean government and several related institute. With the increase of the speed, the vibration control of the high-speed railway becomes important to improve high ride quality. To meet this request, the authors suggest the installation of lateral semi-active damper to the power car of HSR 350x. The result shows better performance.

  • PDF

A Study on Development of Railway Reducer for Low Noise/Vibration (소음/진동을 고려한 철도 감속기 개발에 대한 연구)

  • 이형우;박노길
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.2
    • /
    • pp.130-137
    • /
    • 2004
  • A dynamic model of railway reducer is developed by the lumped parameter method. The model accounts for shafts, bearings flexibilities, gyroscopic effects and the force couplings among the transverse and torsion motions due to gearing. Vibration/noise analysis as well as strength of gear teeth, and bearing life are considered. Excitation forces of railway reduction are considered as the mass unbalance of the rotors, misalignment and a function of gear transmission error which comes from the modified tooth surface. A campbell diagram, in which the excitation sources caused by the mass unbalance of the rotors, misalignment and the transmitted errors of the gearing are considered, shows that, at the operating speed, there are not the critical speed. The program which can be used to analyze and predict vibration/noise characteristics by mass unbalance, misalignment and gear transmission error of railway reduction is developed with this system model.

Study on the Evaluation Standard of Noise and Vibration for Environment-Friendly Railway Construction (환경 친화적 철도건설에 따른 소음.진동의 평가기준)

  • Kim, Dong-Ki;Park, Byung-Eun;Han, Sung-Woo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.473-478
    • /
    • 2007
  • The energy efficiency and environment-friendly aspect of the railway system would be superior to other on-land transportation systems. In a preliminary feasibility study stage, the energy efficiency and problems related with environment are usually not considered. The railway noise and vibration which could be reasons of environmental problems are focused and studied in this paper. The investment for railway systems could be encouraged by the considering of main environmental elements evaluated with the modified noise and vibration standard for environment-friendly railway construction.

  • PDF

A Design on the TMS-DCU Interface for Low and High Level Railway Platforms (저상 및 고상 철도 승강장 겸용 승강문 제어유닛과 열차모니터링시스템의 인터페이스 설계)

  • Kim, Chul-Su;Kim, Jae-Moon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.2
    • /
    • pp.325-330
    • /
    • 2014
  • In order to operate trains both mainline railroad platform and metropolitan subway line platform, it is necessary to develop the door step equipment of the rolling stock regardless of low(500mm, mainline) and high level platforms(1,135mm, metropolitan subway line) because of the requisite door safety system. In this study, TMS-DCU interface is studied for low and high level railway platforms. As a result, Design circuit of TMS(Train Management System)-DCU(Door Control Unit) interface is suitable for telescopic sliding type doorstep unit to minimize damage to the carbody underframe of railway vehicles.