• Title/Summary/Keyword: radian

Search Result 57, Processing Time 0.028 seconds

Application of Phase-shifting Method using fourier Transform to Measurement of In-plane Displacement by Speckle Interferometry

  • Kim, Myung-Soo;Baek, Tae-Hyun;Morimoto, Yoshiharu;Fujigaki, Motoharu
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.25 no.3
    • /
    • pp.171-177
    • /
    • 2005
  • Phase-shifting method using Fourier transform (PSM/FT) has been applied to measurement of in-plane displacement of a specimen. Thirty-two interference fringe patterns each of which has different phase of ${\pi}/16$ radian have been gathered from a specimen with in-plane displacement. Low-pass filtering by 2-D Fourier transform is used to suppress spatial noise of the fringe patterns. ${\alpha}-directional$ Fourier transform for PSM/FT is performed by use of the low-pass filtered 32 fringe patterns. Two kinds of specimens are used for experiment. One is a rectangular steel plate and the other one is a rectangular steel plate containing a circular hole at the center. In-plane displacement of each specimen is measured by PSM/FT, and calculated by finite element method (ANSYS) for comparison. The results are quite comparable, so that PSM/FT can be applied to measurement of in-plane displacement.

A Study on the Ultra Precision Rotational Device using Smooth Impact Drive Mechanism (SIDM(Smooth Impact Drive Mechanism)을 이용한 초정밀 회전기구에 대한 연구)

  • Lee S.;Jeon J.U.;Park K.Y.;Boo K.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.485-486
    • /
    • 2006
  • This paper represents a ultra precision rotational device where the smooth impact drive mechanism(SIDM) is utilized as a driving mechanism. Linear motions of piezoelectric elements are converted to the rotational motion of disk by frictional forces generated between the rotational disk and the friction bars which are attached to the piezoelectric elements. This device was designed to drive a rotational disk using slip-slip motion mechanism based on stick-slip motion mechanism. Experimental results show that the angular velocity was increased in proportion to the magnitude of supplied voltage to piezoelectric element. In our device, the smooth rotational motion was obtained when the driving frequency has been reached to 500Hz under the driving voltage of 100V. The amount of step movement has been revealed to be $3.44{\times}10^{-4}$ radian.

  • PDF

ELASTIC WAVE RESONANCE SCATTERING FROM AN ELASTIC CYLINDER (탄성체로 인한 탄성파의 공명산란)

  • 이희남
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.833-838
    • /
    • 2003
  • The problem of elastic wave resonance scattering from elastic targets is studied in this paper. A new resonance formalism to extract the elastic resonance information of the target from scattered elastic waves is introduced. The proposed resonance formalism is an extension of the works developed for acoustic wave scattering problems by the author. The classical resonance scattering theory computes reasonable magnitude information of the resonances in each partial wave, but the phase behaves in somewhat irregular way, therefore, is not clearly explainable. The proposed method is developed to obtain physically meaningful magnitude and phase of the resonances. As an example problem, elastic wave scattering from an infinitely-long elastic cylinder was analyzed by the proposed method and compared to the results by RST. In case of no mode conversion, both methods generate identical magnitude. However, the new method computes exact $\pi$ radian phase shills through resonances and anti-resonances while RST produces physically unexplainable phases. In case of mode conversion, in addition to the phase even magnitudes are different. The phase shifts through resonances and antiresonances obtained by the proposed method are not exactly $\pi$ radians due to energy leak by mode conversion. But, the phases by the proposed method show reasonable and intuitively correct behavior compared to those by RST.

  • PDF

Experimental Evalutation of the Seismic Performance of WUF-W Moment Connections with a Modified Access Hole (개선된 엑세스 홀 형상을 갖는 WUF-W접합부의 실험을 통한 내진성능평가)

  • Han, Sang Whan;Jung, Jin;Moon, Ki-Hoon;Kim, Jin Won
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.16 no.6
    • /
    • pp.21-28
    • /
    • 2012
  • Welded Unreinforced Flange-Welded Web (WUF-W) connection is one of Special Moment Frame (SMF) specified in ANSI/AISC-358. From the experimental test of WUF-W connection specimens conducted by the previous study, fracture occurred in the beam flange before achieving total inter-story drift angle of 0.04radian required for Special Moment Frames (SMF) system even though the specimens satisfied the design and detailing requirement specified in ANSI/AISC-358. These results are estimated as problem of the access hole geometry. In this study, a full-scale WUF-W connection specimen was made with a modified access hole geometry, and tested with the same test setting and loading as the previous test. From test results, the deformation capacity of the tested WUF-W connection specimen exceeded 4%, which is required for connections in SMF system. Comparing with the WUF-W specimens of the previous study, the strain demand of the beam flange in the tested specimen was decreased and energy dissipation capacity of the specimen was improved.

A Study on the Driving Control for the Automated Guided Vehicle using Microprocessor (마이크로 프로세서를 이용한 무인운반차량의 주행제어에 관한 연구)

  • Kim, B.K.;Kim, J.T.;Kim, Y.S.;Oh, H.C.;Lee, H.K.;Ahn, D.S.
    • Proceedings of the KIEE Conference
    • /
    • 1998.11b
    • /
    • pp.432-434
    • /
    • 1998
  • Recently, For the material transport is increased, the AGV(Automated Guided Vehicle) is the most important part in the industrial factory. So we treat the navigation control problem and experimental results using microprocessor. In navigation control, we have faced with velocity control problem related to guide path tracking problem. Carefully, In the straight line, the AGV moves at its high speed, but in the curve line, especially when the radian ratio is very big it is difficult to follow guide line. So, Using fuzzy controller we have simulated the guide path following AGV according to the varying velocity and experimented it with microprocessor.(Intel 80C196KC) Now, If we use the AGV industrial factory, we will improve the product and efficiency in spite of changing the factory environment.

  • PDF

Design of Fiber Optic Gyroscope for Sensing High Rotation (고속회전 감지 광섬유자이로 설계)

  • Do, Jae-Chul;Chong, Kyoung-Ho;Jo, Min-Sik;Song, Ki-Won;Moon, Hong-Key
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.6
    • /
    • pp.551-555
    • /
    • 2009
  • We studied the design of fiber optic gyroscope that enables to sense high rotation by extending the limit of rotation sensibility of fiber optic interferometer. Based on the digital serrodyne modulation technique, the signal processing of fiber optic gyroscope was designed and the prototype fiber optic gyroscope showed the high rotation sensibility up to ${\pm}3000[deg/sec]$ and scale factor performance of about 150[ppm] by the experiments. Accordingly, we confirmed that the design of fiber optic gyroscope was valid for high rotation.

A Monochromatic Soft X-ray Generation from Femtosecond Laser-produced Plasma with Aluminum

  • Son, Joon-Gon;Hwang, Byung-Jun;Seo, Okkyun;Kim, Jae Myung;Noh, Do Young;Ko, Do-Kyeong
    • Journal of the Korean Physical Society
    • /
    • v.73 no.12
    • /
    • pp.1834-1839
    • /
    • 2018
  • A tabletop ultrafast soft x-ray has been generated from the laser-produce plasma with a femtosecond pulsed Ti:Sapphire laser. The estimated total flux of Al $K{\alpha}$ is of $2.2{\times}10^9photons/sec$ in $4{\pi}$ radian and the parameters related to the optical performance were obtained. The tungsten/silicon multilayer, flat quartz and bent thallium acid phthalate (TLAP) crystal were used for monochromatization of soft x-ray to refine the aluminum $K{\alpha}$ radiation and compared the respective value of $E/{\Delta}E$. To estimate the size of the x-ray source beam generated by a fs laser, the approximation using the FWHM obtained from the x-ray beam scan near the focal point was discussed, and the size of the diameter was about $9.76{\mu}m$.

Development of DC Controller for Battery Control for Elevator Car

  • Lee, Sang-Hyun;Kim, Sangbum
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.13 no.2
    • /
    • pp.103-111
    • /
    • 2021
  • Among transport vehicles, Special Vehicles (SVs) are seriously exposed to energy and environmental problems. In particular, elevator cars used when moving objects in high-rise buildings increase the engine's rotational speed (radian per second: RPM). At this time, when the vehicle accelerates rapidly while idling, energy consumption increases explosively along with the engine speed, and a lot of soot is generated. The purpose of this paper is to develop a bi-directional DC-DC converter for control of vehicle power and secondary battery used in an elevated ladder vehicle (EC) used in the moving industry. As a result of this paper, the performance test of the converter was conducted. The charging/discharging state of the converter was simulated using DC power supply and DC electronic load, and a performance experiment was conducted to measure the input/output power of the converter through a power meter. Through this experimental result, it was confirmed that the efficiency was more than 92% in Buck mode and Boost mode at maximum 1.2kW output.

Simultaneous Adjustment of Geodetic Networks by Geographical Coordinates φ, λ (경위도(經緯度) 좌표(座標) φ, λ에 의한 측지망(測地網)의 동시조정(同時調整))

  • Baick, Eun Kee;Lee, Young Jin;Choi, Yun Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.5 no.4
    • /
    • pp.121-127
    • /
    • 1985
  • This paper deals with simultaneous geodetic networks adjustment by geographical coordinates(${\varphi}$, ${\lambda}$). The adjustment computation is performed by variation of coordinates, and the classical method with fixed points and free networks are also compared. Provisional values for observation equations are computed by extended Gauss-mid lattitude formula using existing official coordinates. Bessel ellipsoid and unit weight are adopted. The processing of a test-network by distances yields the average root mean square error of position 6.2 cm for classical method and 2.4cm for free networks. The standard error of unit weight in a test-network is $1.66{\times}10^{-6}$ radian (0.3"), and the analysis of error ellipses shows that free networks are more normally distributed errors.

  • PDF

Estimation of Friction Coefficient Using Smart Strand

  • Jeon, Se-Jin;Park, Sung Yong;Kim, Sang-Hyun;Kim, Sung Tae;Park, YoungHwan
    • International Journal of Concrete Structures and Materials
    • /
    • v.9 no.3
    • /
    • pp.369-379
    • /
    • 2015
  • Friction in a post-tensioning system has a significant effect on the distribution of the prestressing force of tendons in prestressed concrete structures. However, attempts to derive friction coefficients using conventional electrical resistance strain gauges do not usually lead to reliable results, mainly due to the damage of sensors and lead wires during the insertion of strands into the sheath and during tensioning. In order to overcome these drawbacks of the existing measurement system, the Smart Strand was developed in this study to accurately measure the strain and prestressing force along the strand. In the Smart Strand, the core wire of a 7-wire strand is replaced with carbon fiber reinforced polymer in which the fiber Bragg grating sensors are embedded. As one of the applications of the Smart Strand, friction coefficients were evaluated using a full-scale test of a 20 m long beam. The test variables were the curvature, diameter, and filling ratio of the sheath. The analysis results showed the average wobble and curvature friction coefficients of 0.0038/m and 0.21/radian, respectively, which correspond to the middle of the range specified in ACI 318-08 in the U.S. and Structural Concrete Design Code in Korea. Also, the accuracy of the coefficients was improved by reducing the effective range specified in these codes by 27-34 %. This study shows the wide range of applicability of the developed Smart Strand system.