DOI QR코드

DOI QR Code

A Monochromatic Soft X-ray Generation from Femtosecond Laser-produced Plasma with Aluminum

  • Son, Joon-Gon (Department of Physics and Photon Science, Gwangju Institute of Science and Technology) ;
  • Hwang, Byung-Jun (Department of Physics and Photon Science, Gwangju Institute of Science and Technology) ;
  • Seo, Okkyun (Synchrotron X-ray Station at SPring-8, Research Network and Facility Services Division, National Institute for Materials Science (NIMS)) ;
  • Kim, Jae Myung (Synchrotron X-ray Station at SPring-8, Research Network and Facility Services Division, National Institute for Materials Science (NIMS)) ;
  • Noh, Do Young (Department of Physics and Photon Science, Gwangju Institute of Science and Technology) ;
  • Ko, Do-Kyeong (Department of Physics and Photon Science, Gwangju Institute of Science and Technology)
  • Received : 2018.10.19
  • Accepted : 2018.12.01
  • Published : 2018.12.30

Abstract

A tabletop ultrafast soft x-ray has been generated from the laser-produce plasma with a femtosecond pulsed Ti:Sapphire laser. The estimated total flux of Al $K{\alpha}$ is of $2.2{\times}10^9photons/sec$ in $4{\pi}$ radian and the parameters related to the optical performance were obtained. The tungsten/silicon multilayer, flat quartz and bent thallium acid phthalate (TLAP) crystal were used for monochromatization of soft x-ray to refine the aluminum $K{\alpha}$ radiation and compared the respective value of $E/{\Delta}E$. To estimate the size of the x-ray source beam generated by a fs laser, the approximation using the FWHM obtained from the x-ray beam scan near the focal point was discussed, and the size of the diameter was about $9.76{\mu}m$.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea (NRF)

References

  1. M. M. Murnane, H. C. Kapteyn, M. D. Rosen and R. W. Falcone, Science 251, 531 (1991). https://doi.org/10.1126/science.251.4993.531
  2. D. Salzmann, Ch. Reich, I. Uschmann, E. Forster and P. Gibbon, Phys. Rev. E 65, 036402 (2002). https://doi.org/10.1103/PhysRevE.65.036402
  3. I. Choi, H. Kim, N. Hafz, T. Yu, J. Sung et al., J. Korean Phys. Soc. 55, 517 (2009). https://doi.org/10.3938/jkps.55.517
  4. I. Nam, M. Kim, S. Lee, D. Jang and H. Suk, J. Korean Phys. Soc. 69, 957 (2016). https://doi.org/10.3938/jkps.69.957
  5. J. Kim, Y. H. Hwangbo, S-Y. Lee, J. Korean Phys. Soc. 71, 256 (2017). https://doi.org/10.3938/jkps.71.256
  6. K. Sokolowski-Tinten, C. Blome, C. Dietrich, A. Tarase- vitch, M. Horn von Hoegen, D. von der Linde, A. Cav- alleri, J. Squier and M. Kammler, Phys. Rev. Lett. 87, 225701 (2001). https://doi.org/10.1103/PhysRevLett.87.225701
  7. J. Feng, K. Engelhorn, B. I. Cho, H. J. Lee, M. Greaves, C. P. Weber, R. W. Falcone, H. A. Padmore and P. A. Heimann, Appl. Phys. Lett. 96, 134102 (2010). https://doi.org/10.1063/1.3371810
  8. V. Arora, P. A. Naik, J. A. Chakera, S. Bagchi, M. Tayyab and P. D. Gupta, AIP Advances 4, 047106 (2014). https://doi.org/10.1063/1.4870946
  9. S. Lee, I. W. Choi, I-B. Sohn, K. Lee, G. I. Shim et al., J. Korean Phys. Soc. 67, 800 (2015). https://doi.org/10.3938/jkps.67.800
  10. M. Iqbal, M. Ijaz, D. Y. Noh, J. Korean Phys. Soc. 70, 905 (2017). https://doi.org/10.3938/jkps.70.905
  11. C. J. Milne, T. J. Penfold and M. Chergui, Coord. Chem. Rev. 44, 277 (2014).
  12. D. Laurencin, A. Wong, W. Chrzanowski, J. C. Knowles, D. Qiu et al., Phys. Chem. Chem. Phys. 12, 1081 (2010). https://doi.org/10.1039/B915708E
  13. M. G. Kim, H. J. Shin, J-H. Kim, S-H. Park and Y-K. Sun, J. Electrochem. Soc. 152, A1320 (2005). https://doi.org/10.1149/1.1926647
  14. K. Gilmore, Y. U. Idzerda and M. D. Stiles, Phys. Rev. Lett. 99, 027204 (2007). https://doi.org/10.1103/PhysRevLett.99.027204
  15. J. Gustafson, M. Shipilin, C. Zhang, A. Stierle, U. Hejral et al., Science 10, 1126 (2014).
  16. M Yuste, R Escobar Galindo, I Caretti, R Torres and O Sanchez, J. Phys. D: Appl. Phys. 45, 025303, (2012). https://doi.org/10.1088/0022-3727/45/2/025303
  17. H. Nakano, Y. Goto, P. Lu, T. Nishikawa and N. Uesugi, Appl. Phys. Lett. 75, 18 (1999).
  18. M. Le, M. Ren, Z. Zhang, P. T. Sprunger, R. L. Kurtz and J. C. Flakea, J. Electrochem. Soc. 158, 45 (2011).
  19. P. Gibbon and E. Forster, Plasma Phys. Control. Fusion 38, 769 (1996). https://doi.org/10.1088/0741-3335/38/6/001
  20. F. L. Pedrotti, S. J., Leno S. Pedrotti and L. M. Pedrotti, Introduction to optics, 3rd (2006), Ch. 3.
  21. A. C. Thompson, D. T. Attwood, E. M. Gullikson, M. R. Howells, J. B. Kortright et al., X-ray data booklet, LBNL/PUB-490 (2001), Rev. 2, Table 1 - 3.
  22. E. Kleymenov, J. A. van Bokhoven, C. David, P. Glatzel, M. Janousch et al., Rev. Sci. Instrum. 82, 065107 (2011). https://doi.org/10.1063/1.3600452

Cited by

  1. Intensity clamping and controlled efficiency of X-ray generation under femtosecond laser interaction with nanostructured target in air and helium vol.1692, pp.None, 2018, https://doi.org/10.1088/1742-6596/1692/1/012004
  2. Access to Ultrafast Surface and Interface Carrier Dynamics Simultaneously in Space and Time vol.125, pp.27, 2018, https://doi.org/10.1021/acs.jpcc.1c02433