• Title/Summary/Keyword: rFGF

Search Result 25, Processing Time 0.026 seconds

Genome-wide identification, organization, and expression profiles of the chicken fibroblast growth factor genes in public databases and Vietnamese indigenous Ri chickens against highly pathogenic avian influenza H5N1 virus infection

  • Anh Duc Truong;Ha Thi Thanh Tran;Nhu Thi Chu;Huyen Thi Nguyen;Thi Hao Vu;Yeojin Hong;Ki-Duk Song;Hoang Vu Dang;Yeong Ho Hong
    • Animal Bioscience
    • /
    • v.36 no.4
    • /
    • pp.570-583
    • /
    • 2023
  • Objective: Fibroblast growth factors (FGFs) play critical roles in embryo development, and immune responses to infectious diseases. In this study, to investigate the roles of FGFs, we performed genome-wide identification, expression, and functional analyses of FGF family members in chickens. Methods: Chicken FGFs genes were identified and analyzed by using bioinformatics approach. Expression profiles and Hierarchical cluster analysis of the FGFs genes in different chicken tissues were obtained from the genome-wide RNA-seq. Results: A total of 20 FGF genes were identified in the chicken genome, which were classified into seven distinct groups (A-F) in the phylogenetic tree. Gene structure analysis revealed that members of the same clade had the same or similar exon-intron structure. Chromosome mapping suggested that FGF genes were widely dispersed across the chicken genome and were located on chromosomes 1, 4-6, 9-10, 13, 15, 28, and Z. In addition, the interactions among FGF proteins and between FGFs and mitogen-activated protein kinase (MAPK) proteins are limited, indicating that the remaining functions of FGF proteins should be further investigated in chickens. Kyoto encyclopedia of genes and genomes pathway analysis showed that FGF gene interacts with MAPK genes and are involved in stimulating signaling pathway and regulating immune responses. Furthermore, this study identified 15 differentially expressed genes (DEG) in 21 different growth stages during early chicken embryo development. RNA-sequencing data identified the DEG of FGFs on 1- and 3-days post infection in two indigenous Ri chicken lines infected with the highly pathogenic avian influenza virus H5N1 (HPAIV). Finally, all the genes examined through quantitative real-time polymerase chain reaction and RNA-Seq analyses showed similar responses to HPAIV infection in indigenous Ri chicken lines (R2 = 0.92-0.95, p<0.01). Conclusion: This study provides significant insights into the potential functions of FGFs in chickens, including the regulation of MAPK signaling pathways and the immune response of chickens to HPAIV infections.

PAMAM Dendrimer Conjugated with N-terminal Oligopeptides of Mouse Fibroblast Growth Factor 3 as a Novel Gene Carrier

  • Jung, Jinwoo;Lee, Jeil;Kim, Tae-Hun;Yang, Bong Suk;Lee, Eunji;Kim, Youn-Joong;Park, Jong-Sang;Choi, Joon Sig
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.4
    • /
    • pp.1036-1042
    • /
    • 2014
  • In this study, we introduced the RRLR oligopeptide sequences on the surface of polyamidoamine (PAMAM) dendrimer and characterized the physical properties and gene carrier activity of the novel polymer using HEK 293, NIH3T3, and HeLa cells. The RRLR peptide sequences were derived from a mouse fibroblast growth factor 3 (FGF3) protein containing a bipartite NLS motif. The entire sequence of FGF3 is RLRRDAGGRGGVYEHLGGAPRRRK and it has two functional sequences RLRR and RRRK at N-terminus and C-terminus, respectively. In particular, PAMAM G4-RRLR conferred enhanced transfection efficiency and lower cytotoxicity compared with those of PEI 25 kDa, PAMAM G4-R, and PAMAM G4 in various cell lines. These results suggest that the introduction of N-terminal oligopeptides of FGF3 on the surface of PAMAM holds promise as an effective non-viral gene delivery carrier for gene therapy.

Hair Growth Effect of TS-SCLF from Schisandra chinensis Extract Fermented with Lactobacillus plantarum

  • Young Min, Woo;Jae Yong, Seo;Soo-ya, Kim;Ji Hyun, Cha;Hyun Dae, Cho;Young Kwon, Cha;Ju Tae, Jeong;Sung Min, Park;Hwa Sun, Ryu;Jae Mun, Kim;Moon Hoy, Kim;Hee-Taek, Kim;Yong-Min, Kim;Kwang Sik, Joo;Sun Mi, Lee;JungNo, Lee;Andre, Kim
    • Microbiology and Biotechnology Letters
    • /
    • v.50 no.4
    • /
    • pp.533-547
    • /
    • 2022
  • This study investigated the hair growth effect of Schisandra chinensis extract (TS-SC) and TS-SC fermented by Lactobacillus plantarum (TS-SCLF) on human dermal papilla cells (hDPCs). The production of vascular endothelial growth factor (VEGF), insulin-like growth factor 1 (IGF-1), keratinocyte growth factor/fibroblast growth factor 7 (KGF/FGF-7) and hepatocyte growth factor (HGF), transforming growth factor beta 1 (TGF-β1) were examined. The secretion rates of VEGF and KGF/FGF-7 were high in TS-SC, and the secretion rates of IGF-1 and HGF were high in TS-SCLF. TGF-β1 was inhibited in a concentration-dependent manner in all samples. Gene expression of VEGF, IGF-1, KGF, HGF and alkaline phosphatase, relevant to hair growth, were examined. The data revealed that TS-SC and TS-SCLF successfully promoted hair growth in hDPCs. The IGF-1 gene was expressed in a dose-dependent manner in TS-SCLF. These results indicate that TS-SC and TS-SCLF fermented extract effectively promoted hair growth and gene expression relevant to hair growth in hDPCs. Used in clinical trials the test substance 'CMK-LPF01' showed a statistically significant increase in the number of hairs at 8 weeks, 16 weeks, and 24 weeks compared to before product use, and a change in hair growth, a secondary efficacy evaluation variable. Through additional research in the future, it is expected that "CMK-LPF01" can be developed as a functional material that can help alleviate symptoms of hair loss.

Development of TaqMan probe-based real-time PCR for rapid identification of beef, pork and poultry meat (소, 돼지, 가금육류의 신속한 동정을 위한 TaqMan probe를 이용한 real-time PCR 개발)

  • Koh, Ba-Ra-Da;Kim, Ji-Yeon;Na, Ho-Myung;Park, Seong-Do;Kim, Yong-Hwan
    • Korean Journal of Veterinary Service
    • /
    • v.35 no.3
    • /
    • pp.215-222
    • /
    • 2012
  • Species-specific $TaqMan^{(R)}$ probe-based real-time PCR assays were developed for detection of beef, pork, chicken, duck, goose and turkey. The primer and probe sets used in this study were designed to be complementary to fibroblast growth factor (FGF) for cattle and pig, mitochondrial NADH dehydrogenase (ND) subunit 3 and ND2 for chicken and duck, 12S rRNA for goose and turkey, respectively. As internal positive control we used conserved region in the ribosomal 18S RNA gene to ensure the accuracy of the detection of target DNA by real-time PCR. We confirmed that real-time PCR assays with the primer and probe sets were positive for cattle, pig and chicken intended target animal species with no cross-reactivity with other non-target animal species. Only >50 ng DNA of beef show cross-reactivity in the determination of duck. Using species-specific primer and probe sets, it was possible to detect amounts of 0.1 ng DNA of cattle and pig, 1.0 pg DNA of chicken, duck and turkey, and 0.1 pg DNA of goose for raw samples, respectively. The detection limits were 0.1 ng DNA of cattle, 1.0 ng DNA of pig and 1.0 pg DNA of chicken for DNA mixtures (beef, pork and chicken) extracted from heat-treated ($121^{\circ}C$/5 min) meat samples. In conclusion, it can be suggested that the $TaqMan^{(R)}$ probe-based assay developed in this study might be a rapid and specific method for the identification of meat species in raw or cooked meat products.

3-Deoxysappanchalcone Promotes Proliferation of Human Hair Follicle Dermal Papilla Cells and Hair Growth in C57BL/6 Mice by Modulating WNT/β-Catenin and STAT Signaling

  • Kim, Young Eun;Choi, Hyung Chul;Lee, In-Chul;Yuk, Dong Yeon;Lee, Hyosung;Choi, Bu Young
    • Biomolecules & Therapeutics
    • /
    • v.24 no.6
    • /
    • pp.572-580
    • /
    • 2016
  • 3-Deoxysappanchalcone (3-DSC) has been reported to possess anti-allergic, antiviral, anti-inflammatory and antioxidant activities. In the present study, we investigated the effects of 3-DSC on the proliferation of human hair follicle dermal papilla cells (HDPCs) and mouse hair growth in vivo. A real-time cell analyzer system, luciferase assay, Western blot and real-time polymerase chain reaction (PCR) were employed to measure the biochemical changes occurring in HDPCs in response to 3-DSC treatment. The effect of 3-DSC on hair growth in C57BL/6 mice was also examined. 3-DSC promoted the proliferation of HDPCs, similar to Tofacitinib, an inhibitor of janus-activated kinase (JAK). 3-DSC promoted phosphorylation of ${\beta}$-catenin and transcriptional activation of the T-cell factor. In addition, 3-DSC potentiated interleukin-6 (IL-6)-induced phosphorylation and subsequent transactivation of signal transducer and activator of transcription-3 (STAT3), thereby increasing the expression of cyclin-dependent kinase-4 (Cdk4), fibroblast growth factor (FGF) and vascular endothelial growth factor (VEGF). On the contrary, 3-DSC attenuated STAT6 mRNA expression and IL4-induced STAT6 phosphorylation in HDPCs. Finally, we observed that topical application of 3-DSC promoted the anagen phase of hair growth in C57BL/6 mice. 3-DSC stimulates hair growth possibly by inducing proliferation of follicular dermal papilla cells via modulation of $WNT/{\beta}$-catenin and STAT signaling.

Constitutively active Ras negatively regulates Erk MAP kinase through induction of MAP kinase phosphatase 3 (MKP3) in NIH3T3 cells

  • Park, Young Jae;Lee, Jong Min;Shin, Soon Young;Kim, Young Ho
    • BMB Reports
    • /
    • v.47 no.12
    • /
    • pp.685-690
    • /
    • 2014
  • The Ras/Raf/MEK/Erk signaling pathway is important for regulation of cell growth, proliferation, differentiation, survival, and apoptosis in response to a variety of extracellular stimuli. Lack of Erk MAPK activation is observed in several cancer cells despite active activation of Ras. However, little is known about the modulation of Erk1/2 activity by active Ras. Here, we show that overexpression of active H-Ras (H-RasG12R) in NIH3T3 fibroblasts impaired FGF2-induced Erk1/2 phosphorylation, as compared to wild-type cells. Northern blot analysis revealed that prolonged expression of active Ras increased MAP kinase phosphatase 3 (MKP3) mRNA expression, a negative regulator of Erk MAPK. Inhibition of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway abrogated active Ras-induced up-regulation of MKP3 expression, leading to the rescue of Erk1/2 phosphorylation. Our results demonstrated that the Ras/Raf/MEK/Erk signaling cascade is negatively regulated by the PI3K/Aktdependent transcriptional activation of the MKP3 gene.

Extracts from Rhizopus oryzae KSD-815 of Korean Traditional Nuruk Confer the Potential to Inhibit Hypertension, Platelet Aggregation, and Cancer Metastasis in vitro

  • Lee, Sang-Jin;Bae, Hyun-Jin;Ryu, Ji-Yeon;Lee, Dae-Young;Kim, Gye-Won;Baek, Na-Min;Kwon, Moo-Sik;Hong, Sung-Youl
    • Food Science and Biotechnology
    • /
    • v.18 no.6
    • /
    • pp.1423-1429
    • /
    • 2009
  • Rhizopus oryzae KSD-815 was isolated from nuruk that has been used to make Korean traditional wines. This study was performed to investigate the effect of cultures of R. oryzae KSD-815 on cardiovascular disorders and cancer metastasis. Firstly, these cultures were sequentially fractionationed with n-hexane (TAHe), ethylacetate (TAE), n-butanol (TAB), and $H_2O$ (TAW). The TAE inhibited the activity of angiotensin-converting enzyme (ACE) and TAB suppressed platelet aggregation in vitro. TAE and TAB inhibited cell motility of human breast cancer cells. Furthermore, TAW interrupted the formation of neovasculature and tube-like structure, and down-regulated the expression of angiogenic factors, basic fibroblast growth factor (bFGF), tumor necrosis factor-$\alpha$ (TNF-$\alpha$), and hypoxia-inducible factor-$1{\alpha}$ (HIF-$1{\alpha}$) in breast cancer cells. These results indicated that cultures of R. oryzae KSD-815 display the inhibitory activities on hypertension, platelet aggregation, and metastasis, and suggest that these cultures might be further probed for the purposes as therapeutic agents or dietary supplements.

Molecular Mechanism of Runx2-Dependent Bone Development

  • Komori, Toshihisa
    • Molecules and Cells
    • /
    • v.43 no.2
    • /
    • pp.168-175
    • /
    • 2020
  • Runx2 is an essential transcription factor for skeletal development. It is expressed in multipotent mesenchymal cells, osteoblast-lineage cells, and chondrocytes. Runx2 plays a major role in chondrocyte maturation, and Runx3 is partly involved. Runx2 regulates chondrocyte proliferation by directly regulating Ihh expression. It also determines whether chondrocytes become those that form transient cartilage or permanent cartilage, and functions in the pathogenesis of osteoarthritis. Runx2 is essential for osteoblast differentiation and is required for the proliferation of osteoprogenitors. Ihh is required for Runx2 expression in osteoprogenitors, and hedgehog signaling and Runx2 induce the differentiation of osteoprogenitors to preosteoblasts in endochondral bone. Runx2 induces Sp7 expression, and Runx2, Sp7, and canonical Wnt signaling are required for the differentiation of preosteoblasts to immature osteoblasts. It also induces the proliferation of osteoprogenitors by directly regulating the expression of Fgfr2 and Fgfr3. Furthermore, Runx2 induces the proliferation of mesenchymal cells and their commitment into osteoblast-lineage cells through the induction of hedgehog (Gli1, Ptch1, Ihh), Fgf (Fgfr2, Fgfr3), Wnt (Tcf7, Wnt10b), and Pthlh (Pth1r) signaling pathway gene expression in calvaria, and more than a half-dosage of Runx2 is required for their expression. This is a major cause of cleidocranial dysplasia, which is caused by heterozygous mutation of RUNX2. Cbfb, which is a co-transcription factor that forms a heterodimer with Runx2, enhances DNA binding of Runx2 and stabilizes Runx2 protein by inhibiting its ubiquitination. Thus, Runx2/Cbfb regulates the proliferation and differentiation of chondrocytes and osteoblast-lineage cells by activating multiple signaling pathways and via their reciprocal regulation.

Similarities and Distinctions in the Effects of Metformin and Carbon Monoxide in Immunometabolism

  • Park, Jeongmin;Joe, Yeonsoo;Ryter, Stefan W.;Surh, Young-Joon;Chung, Hun Taeg
    • Molecules and Cells
    • /
    • v.42 no.4
    • /
    • pp.292-300
    • /
    • 2019
  • Immunometabolism, defined as the interaction of metabolic pathways with the immune system, influences the pathogenesis of metabolic diseases. Metformin and carbon monoxide (CO) are two pharmacological agents known to ameliorate metabolic disorders. There are notable similarities and differences in the reported effects of metformin and CO on immunometabolism. Metformin, an anti-diabetes drug, has positive effects on metabolism and can exert anti-inflammatory and anti-cancer effects via adenosine monophosphate-activated protein kinase (AMPK)-dependent and AMPK-independent mechanisms. CO, an endogenous product of heme oxygenase-1 (HO-1), can exert anti-inflammatory and antioxidant effects at low concentration. CO can confer cytoprotection in metabolic disorders and cancer via selective activation of the protein kinase R-like endoplasmic reticulum (ER) kinase (PERK) pathway. Both metformin and CO can induce mitochondrial stress to produce a mild elevation of mitochondrial ROS (mtROS) by distinct mechanisms. Metformin inhibits complex I of the mitochondrial electron transport chain (ETC), while CO inhibits ETC complex IV. Both metformin and CO can differentially induce several protein factors, including fibroblast growth factor 21 (FGF21) and sestrin2 (SESN2), which maintain metabolic homeostasis; nuclear factor erythroid 2-related factor 2 (Nrf2), a master regulator of the antioxidant response; and REDD1, which exhibits an anticancer effect. However, metformin and CO regulate these effects via different pathways. Metformin stimulates p53- and AMPK-dependent pathways whereas CO can selectively trigger the PERK-dependent signaling pathway. Although further studies are needed to identify the mechanistic differences between metformin and CO, pharmacological application of these agents may represent useful strategies to ameliorate metabolic diseases associated with altered immunometabolism.

Reconstruction and Exploratory Analysis of mTORC1 Signaling Pathway and Its Applications to Various Diseases Using Network-Based Approach

  • Buddham, Richa;Chauhan, Sweety;Narad, Priyanka;Mathur, Puniti
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.3
    • /
    • pp.365-377
    • /
    • 2022
  • Mammalian target of rapamycin (mTOR) is a serine-threonine kinase member of the cellular phosphatidylinositol 3-kinase (PI3K) pathway, which is involved in multiple biological functions by transcriptional and translational control. mTOR is a downstream mediator in the PI3K/Akt signaling pathway and plays a critical role in cell survival. In cancer, this pathway can be activated by membrane receptors, including the HER (or ErbB) family of growth factor receptors, the insulin-like growth factor receptor, and the estrogen receptor. In the present work, we congregated an electronic network of mTORC1 built on an assembly of data using natural language processing, consisting of 470 edges (activations/interactions and/or inhibitions) and 206 nodes representing genes/proteins, using the Cytoscape 3.6.0 editor and its plugins for analysis. The experimental design included the extraction of gene expression data related to five distinct types of cancers, namely, pancreatic ductal adenocarcinoma, hepatic cirrhosis, cervical cancer, glioblastoma, and anaplastic thyroid cancer from Gene Expression Omnibus (NCBI GEO) followed by pre-processing and normalization of the data using R & Bioconductor. ExprEssence plugin was used for network condensation to identify differentially expressed genes across the gene expression samples. Gene Ontology (GO) analysis was performed to find out the over-represented GO terms in the network. In addition, pathway enrichment and functional module analysis of the protein-protein interaction (PPI) network were also conducted. Our results indicated NOTCH1, NOTCH3, FLCN, SOD1, SOD2, NF1, and TLR4 as upregulated proteins in different cancer types highlighting their role in cancer progression. The MCODE analysis identified gene clusters for each cancer type with MYC, PCNA, PARP1, IDH1, FGF10, PTEN, and CCND1 as hub genes with high connectivity. MYC for cervical cancer, IDH1 for hepatic cirrhosis, MGMT for glioblastoma and CCND1 for anaplastic thyroid cancer were identified as genes with prognostic importance using survival analysis.