Browse > Article
http://dx.doi.org/10.4014/jmb.2108.08007

Reconstruction and Exploratory Analysis of mTORC1 Signaling Pathway and Its Applications to Various Diseases Using Network-Based Approach  

Buddham, Richa (Centre for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Amity University)
Chauhan, Sweety (Centre for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Amity University)
Narad, Priyanka (Centre for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Amity University)
Mathur, Puniti (Centre for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Amity University)
Publication Information
Journal of Microbiology and Biotechnology / v.32, no.3, 2022 , pp. 365-377 More about this Journal
Abstract
Mammalian target of rapamycin (mTOR) is a serine-threonine kinase member of the cellular phosphatidylinositol 3-kinase (PI3K) pathway, which is involved in multiple biological functions by transcriptional and translational control. mTOR is a downstream mediator in the PI3K/Akt signaling pathway and plays a critical role in cell survival. In cancer, this pathway can be activated by membrane receptors, including the HER (or ErbB) family of growth factor receptors, the insulin-like growth factor receptor, and the estrogen receptor. In the present work, we congregated an electronic network of mTORC1 built on an assembly of data using natural language processing, consisting of 470 edges (activations/interactions and/or inhibitions) and 206 nodes representing genes/proteins, using the Cytoscape 3.6.0 editor and its plugins for analysis. The experimental design included the extraction of gene expression data related to five distinct types of cancers, namely, pancreatic ductal adenocarcinoma, hepatic cirrhosis, cervical cancer, glioblastoma, and anaplastic thyroid cancer from Gene Expression Omnibus (NCBI GEO) followed by pre-processing and normalization of the data using R & Bioconductor. ExprEssence plugin was used for network condensation to identify differentially expressed genes across the gene expression samples. Gene Ontology (GO) analysis was performed to find out the over-represented GO terms in the network. In addition, pathway enrichment and functional module analysis of the protein-protein interaction (PPI) network were also conducted. Our results indicated NOTCH1, NOTCH3, FLCN, SOD1, SOD2, NF1, and TLR4 as upregulated proteins in different cancer types highlighting their role in cancer progression. The MCODE analysis identified gene clusters for each cancer type with MYC, PCNA, PARP1, IDH1, FGF10, PTEN, and CCND1 as hub genes with high connectivity. MYC for cervical cancer, IDH1 for hepatic cirrhosis, MGMT for glioblastoma and CCND1 for anaplastic thyroid cancer were identified as genes with prognostic importance using survival analysis.
Keywords
mTORC1 network; differentially expressed genes; gene and pathway enrichment; survival analysis;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Sarbassov DD, Ali SM, Kim DH, Guertin DA, Latek RR, Erdjument-Bromage H, et al. 2004. Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr. Biol. 14: 1296-1302.   DOI
2 Peter Kovacs, Robert L Hanson, Yong-Ho Lee, Xiaolin Yang, Sayuko Kobes, Paska A Permana, et al. 2003. The role of insulin receptor substrate-1 Gene (IRS1) in type 2 diabetes in pima Indians. Diabetes 52: 3005-3009.   DOI
3 Kremenevskaja N, Wasielewski RV, Rao AS, Schofl C, Andersson T, Brabant G. 2005. Wnt-5a has tumor suppressor activity in thyroid carcinoma. Oncogene. 24: 2144-2154.   DOI
4 Cheruku HR, Mohamedali A, Cantor DI, HweeTan S, Nice EC, Baker MS. 2015. Transforming growth factor-β, MAPK and Wnt signaling interactions in cancer. EuPA Open Proteomics. 8: 104-115.   DOI
5 Sanders SS, De Simone FI, Thomas GM. 2019. mTORC1 signaling is palmitoylation-dependent in hippocampal neurons and nonneuronal cells and involves dynamic palmitoylation of LAMTOR1 and mTOR. Front. Cell Neurosci. 13: 115-130.   DOI
6 Abramowicz A, Gos M. 2014.Neurofibromin in neurofibromatosis type 1 - mutations in NF1gene as a cause of disease. Dev. Period Med. 18: 297-306.
7 Cardamom GA, Gonzalez N, Maggio J, Lorenzano PM, Gomez DE. 2017. Rho GTPase as therapeutic targets in cancer. Int. J. Oncol. 51: 1025-1034.   DOI
8 Popova NV, Jucker M. 2021.The Role of mTOR signaling as a therapeutic target in cancer. Int. J. Mol. Sci. 22: 1743-1760.   DOI
9 Glaab E, Baudot A, Krasnogor N, Schneider R, Valencia A. 2012. Enrich Net: network-based gene set enrichment analysis. Bioinformatics 28: i451-i457.   DOI
10 Hietakangas V, Cohen SM. 2008. TOR complex 2 is needed for cell cycle progression and anchorage-independent growth of MCF7 and PC3 tumor cells. BMC Cancer 8: 282-289.   DOI
11 Mao Z, Zhang W. 2018. Role of mTOR in glucose and lipid metabolism. Int. J. Mol. Sci. 19: 2043-2057.   DOI
12 Michal Grzmil, Pier Morin Jr, Maria Maddalena Lino, Adrian Merlo, Stephan Frank, Yuhua Wang, et al. 2011. MAP kinase-interacting kinase 1 regulates SMAD2-dependent TGF-β signaling pathway in human glioblastoma. Cancer Res. 71: 2392-2402.   DOI
13 Jaime Miguel Pita , Ines Filipa Figueiredo, Margarida Maria Moura, Valeriano Leite, Branca Maria Cavaco. 2014. Cell cycle deregulation and TP53 and RAS mutations are major events in poorly differentiated and undifferentiated thyroid carcinomas. J. Clin. Endocrinol. Metab. 99: E497-E507.   DOI
14 Clark TG, Bradburn MJ, Love SB, Altman DG. 2003. Survival analysis part I: basic concepts and first analyses. Br. J. Cancer 89: 232-238.   DOI
15 Inoki K, Li Y, Xu T, Guan KL. 2003. Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling. Genes Dev. 17: 1829-1834.   DOI
16 Greer EL, Brunet A. 2005. FOXO transcription factors at the interface between longevity and tumor suppression. Oncogene 24: 7410-7425.   DOI
17 Yang J, Nie J, Ma XL, Wei Y, Peng Y, Wei X. 2019. Targeting PI3K in cancer: mechanisms and advances in clinical trials. Mol. Cancer 18: 26.   DOI
18 Peter WS. 2017. Therapeutic targeting of the pyruvate dehydrogenase complex/pyruvate dehydrogenase kinase (PDC/PDK) axis in cancer. J. Natl. Cancer Inst. 109: djx071-djx089.
19 Wolfson RL, Chantranupong L, Wyant GA, Gu X, Orozco JM, Shen K, et al. 2017. KICSTOR recruits GATOR1 to the lysosome and is necessary for nutrients to regulate mTORC1. Nature 543: 438-442.   DOI
20 Gregor Warsow, Boris Greber, Steffi S I Falk, Clemens Harder, Marcin Siatkowski, Sandra Schordan, et al. 2010. ExprEssence - Revealing the essence of differential experimental data in the context of an interaction/regulation net-work. BMC Syst. Biol. 4: 164-182.   DOI
21 Maryam S, Funda MB. 2019. Targeting AKT for cancer therapy. Expert. Opin. Investig. Drugs 28: 977-988.   DOI
22 Lamming DW, Ye L, Katajisto P, Goncalves MD, Saitoh M, Stevens DM, et al. 2012. Rapamycin-induced insulin resistance is mediated by mTORC2 loss and uncoupled from longevity. Science 335: 1638-1643.   DOI
23 Gan X, Wang J, Wang C, Sommer E, Kozasa T, Srinivasula S, et al. 2012.PRR5L degradation promotes mTORC2-mediated PKC-δ phosphorylation and cell migration downstream of Gα12. Nat. Cell Biol. 14: 686-696.   DOI
24 Sarbassov DD, Guertin DA, Ali SM, Sabatini DM. 2005. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 307: 1098-1101.   DOI
25 Garcia-Martinez JM, Alessi DR. 2008. mTOR complex 2 (mTORC2) controls hydrophobic motif phosphorylation and activation of serum- and glucocorticoid -induced protein kinase 1 (SGK1). Biochem. J. 416: 375-385.   DOI
26 Grabiner BC, Nardi V, Birsoy K, Possemato R, Shen K, Sinha S, et al. 2014. A diverse array of cancer -associated MTOR mutations are hyperactivating and can predict rapamycin sensitivity. Cancer Discov. 4: 554-563.   DOI
27 Porta C, Amici MD, Quaglini S, Paglino C, Tagliani F, Boncimino A, et al. 2008. Circulating interleukin-6 as a tumor marker for Hepatocellular carcinoma. Ann. Oncol. 19: 353-358.   DOI
28 Bo Li, Zhang J, Su Y, Hou Y, Wang Z. 2019.Overexpression of PTEN may increase the effect of pemetrexed on A549 cells via inhibition of the PI3K/AKT/mTOR pathway and carbohydrate metabolism. Mol. Med. Rep. 20: 3793-3801.
29 Ramirez Reyes JMJ, Cuesta R, Pause A. 2021. Folliculin: a regulator of transcription through AMPK and mTOR signaling pathways. Front. Cell Dev. Biol. 9: 667311-667333.   DOI
30 Guo Y, Xiao Z, Yang Li, Gao Y, Zhu QJ, Hu LJ. 2020. Hypoxia inducible factors in Hepatocellular carcinoma. Oncotarget 43: 3-15.
31 Dietrich P, Gaza A, Wormser L. 2019. Neuroblastoma RAS viral oncogene homolog (NRAS) is a novel prognostic marker and contributes to sorafenib resistance in Hepatocellular Carcinoma. Neoplasia 21: 257-268.   DOI
32 Rodrigues C, Leanna R Joy, Sasikala P Sachithanandan, Sudhir Krishna. 2019. Notch signaling in cervical cancer. Exp. Cell Res. 385: 111682-111699.   DOI
33 Jacinto E, Loewith R, Schmidt A, Lin S, Ruegg MA, Hall A, et al. 2004. Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nat. Cell Biol. 6: 1122-1128.   DOI
34 McCall MN, Bolstad BM, Irizarry RA. 2010. Frozen robust multiarray analysis (fRMA). Biostatistics 11: 242-253.   DOI
35 Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. 2003. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13: 2498-2504.   DOI
36 Maere S, Heymans K, Kuiper M. 2005. BiNGO: a Cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. Bioinformatics 21: 3448-3449.   DOI
37 Winterhalter C, Widera P, Krasnogor N. 2014. JEPETTO: a Cytoscape plugin for gene set enrichment and topological analysis based on interaction networks. Bioinformatics 30: 1029-1037.   DOI
38 Glaab E, Baudot A, Krasnogor N, Valencia A. 2010. Extending pathways and processes using molecular interaction networks to analyze cancer genome data. BMC Bioinformatics 11: 597-607.   DOI
39 Bader GD, Hogue CW. 2003. An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics 4: 2849-2861.
40 Buller V, Carolyn L. 2010. Role of GLUT1 in the Mammalian target of rapamycin pathway: mechanisms of regulation. Mlibrary 34: 23-43.
41 Gingras AC, Gygi SP, Raught B, Polakiewicz RD, Abraham RT, Hoekstra MF, et al. 1999. Regulation of 4E-BP1 phosphorylation: a novel two-step mechanism. Genes Dev. 13: 1422-1437.   DOI
42 Wang HY, Lian P, Zheng PS. 2015. SOX9, a potential tumor suppressor in cervical cancer, transactivate p21WAF1/CIP1 and suppresses cervical tumor growth. Oncotarget. 6: 20711-20722.   DOI
43 Fernandes Silva GA, Lima Nunes RA, Morale MG, Boccardo E, Aguayo F, Termini L, et al. 2018. Oxidative stress: therapeutic approaches for cervical cancer treatment. Clinics (Sao Paulo). 73: e548s-e558s.   DOI
44 Atkinson GP, Nozell SE, Benveniste ET. 2010. NF-κB and STAT3 signaling in glioma: targets for future therapies. Expert Rev. Neurother. 10: 575-586.   DOI
45 Magdalena K, Cynthia SS, Tasha M, Hong Wu, Elizabeth PH. 2008. mTOR is activated in the majority of malignant melanomas. J. Investig. Dermatol. 128: 980-987.   DOI
46 Hara K, Maruki Y, Long X, Yoshino K, Oshiro N, Hidayat S, et al. 2002. Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action. Cell 110: 177-189.   DOI
47 Sancak Y, Thoreen CC, Peterson TR, Lindquist RA, Kang SA, Spooner E, et al. 2007. PRAS40 is an insulin-regulated inhibitor of the mTORC1 protein kinase. Mol. Cell. 25: 903-915.   DOI
48 Holz MK, Ballif BA, Gygi SP, Blenis J. 2005. mTOR and S6K1 mediate assembly of the translation preinitiation complex through dynamic protein interchange and ordered phosphorylation events. Cell 123: 569- 580.   DOI
49 Porstmann T, Santos CR, Griffiths B, Cully M, Wu M, Leevers S, et al. 2008. SREBP activity is regulated by mTORC1 and contributes to Akt-dependent cell growth. Cell Metab. 8: 224-236.   DOI
50 Justin TA, Ruowen Z, Rebecca JB.2021. GLI1: A therapeutic target for cancer. Front. Oncol. 11: 673154.   DOI
51 Jewell JL, Kim YC, Russell RC, Yu FX, Park HW, Plouffe SW, et al. 2015. Differential regulation of mTORC1 by leucine and glutamine. Science 347: 194-198.   DOI
52 Cristina R, Rossella E. 2021. A narrative review of genetic alterations in primary thyroid epithelial cancer. Int. J. Mol. Sci. 22: 1726-1738.   DOI
53 Joanne ES, Noon G. 2020. The impact of autophagy during the development and survival of glioblastoma. Open Biol. 10: 200184-200198.   DOI
54 Ben-Sahra I, Hoxhaj G, Ricoult SJH, Asara JM, Manning BD. 2016. mTORC1 induces purine synthesis through control of the mitochondrial tetrahydrofolate cycle. Science 351: 728-733.   DOI
55 Tee AR, Manning BD, Roux PP, Cantley LC, Blenis J. 2003. Tuberous sclerosis complex gene products, Tuberin and Hamartin, control mTOR signaling by acting as a GTPase-activating protein complex toward Rheb. Curr. Biol. 13: 1259-1268.   DOI
56 Long X, Lin Y, Ortiz-Vega S, Yonezawa K, Avruch J. 2005. Rheb binds and regulates the mTOR kinase. Curr. Biol. 15: 702-713.   DOI
57 Mohammed Altaf, Janakiram NB, Madka Venkateshwar, et al. 2014. Eflornithine (DFMO) Prevents progression of pancreatic cancer by modulating ornithine decarboxylase signaling. Cancer Prev. Res. (Phila). 7: 1198-1209.   DOI
58 Kim DH, Sarbassov DD, Ali SM, King JE, Latek RR, Erdjument-Bromage H, et al. 2002. mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell 110: 163-175.   DOI
59 Saxton RA, Sabatini DM. 2017. mTOR Signaling in growth, metabolism, and disease. Cell 168: 361-371.   DOI
60 Eng CP, Sehgal SN, Vezina C.1984. Activity of rapamycin (AY-22, 989) against transplanted tumors. J. Antibiot. (Tokyo) 37: 1231-1247.   DOI
61 Huang Q, Li JH, Zheng J, and Wei A. 2019. The carcinogenic role of the notch signaling pathway in the development of hepatocellular carcinoma. J. Cancer 10: 1570-1579.   DOI
62 Bar-Peled L, Chantranupong L, Cherniack AD, Chen WW, Ottina KA, Grabiner BC, et al. 2013. A Tumor suppressor complex with GAP activity for the Rag GTPase that signal amino acid sufficiency to mTORC1. Science 340: 1100-1126.   DOI
63 Hongxi Chen, Zhipeng Zhang, Yebin Lu, Kun Song, Xiwu Liu, Fada Xia, et al. 2017. Down-regulation of ULK1 by microRNA-372 inhibits the survival of human pancreatic adenocarcinoma cells. Cancer Sci. 108: 1811-1819.   DOI