• Title/Summary/Keyword: r-submodule

Search Result 74, Processing Time 0.022 seconds

INTUITIONISTIC FUZZY WEAK CONGRUENCE ON A NEAR-RING MODULE

  • Hur Kul;Jang Su-Youn;Lee Keon-Chang
    • The Pure and Applied Mathematics
    • /
    • v.13 no.3 s.33
    • /
    • pp.167-187
    • /
    • 2006
  • We introduce the concepts of intuitionistic fuzzy submodules and intuitionistic fuzzy weak congruences on an R-module (Near-ring module). And we obtain the correspondence between intuitionistic fuzzy weak congruences and intuitionistic fuzzy submodules of an R-module. Also, we define intuitionistic fuzzy quotient R-module of an R-module over an intuitionistic fuzzy submodule and obtain the correspondence between intuitionistic fuzzy weak congruences on an R-module and intuitionistic fuzzy weak congruences on intuitionistic fuzzy quotient R-module over an intuitionistic fuzzy submodule of an R-module.

  • PDF

ON NOETHERIAN PSEUDO-PRIME SPECTRUM OF A TOPOLOGICAL LE-MODULE

  • Anjan Kumar Bhuniya;Manas Kumbhakar
    • Communications of the Korean Mathematical Society
    • /
    • v.38 no.1
    • /
    • pp.1-9
    • /
    • 2023
  • An le-module M over a commutative ring R is a complete lattice ordered additive monoid (M, ⩽, +) having the greatest element e together with a module like action of R. This article characterizes the le-modules RM such that the pseudo-prime spectrum XM endowed with the Zariski topology is a Noetherian topological space. If the ring R is Noetherian and the pseudo-prime radical of every submodule elements of RM coincides with its Zariski radical, then XM is a Noetherian topological space. Also we prove that if R is Noetherian and for every submodule element n of M there is an ideal I of R such that V (n) = V (Ie), then the topological space XM is spectral.

ON WEAKLY S-PRIME SUBMODULES

  • Hani A., Khashan;Ece Yetkin, Celikel
    • Bulletin of the Korean Mathematical Society
    • /
    • v.59 no.6
    • /
    • pp.1387-1408
    • /
    • 2022
  • Let R be a commutative ring with a non-zero identity, S be a multiplicatively closed subset of R and M be a unital R-module. In this paper, we define a submodule N of M with (N :R M)∩S = ∅ to be weakly S-prime if there exists s ∈ S such that whenever a ∈ R and m ∈ M with 0 ≠ am ∈ N, then either sa ∈ (N :R M) or sm ∈ N. Many properties, examples and characterizations of weakly S-prime submodules are introduced, especially in multiplication modules. Moreover, we investigate the behavior of this structure under module homomorphisms, localizations, quotient modules, cartesian product and idealizations. Finally, we define two kinds of submodules of the amalgamation module along an ideal and investigate conditions under which they are weakly S-prime.

MaxR(M) AND ZARISKI TOPOLOGY

  • ANSARI-TOROGHY, H.;KEIVANI, S.;OVLYAEE-SARMAZDEH, R.
    • Honam Mathematical Journal
    • /
    • v.28 no.3
    • /
    • pp.365-376
    • /
    • 2006
  • Let R be a commutative ring and let M be an R-module. Let X = $Spec_R(M)$ be the prime spectrum of M with Zariski topology. In this paper, by using the topological properties of X, we will obtain some conditions under which $Max_R(M)=Spec_R(M)$.

  • PDF

Multiplication Modules and characteristic submodules

  • Park, Young-Soo;Chol, Chang-Woo
    • Bulletin of the Korean Mathematical Society
    • /
    • v.32 no.2
    • /
    • pp.321-328
    • /
    • 1995
  • In this note all are commutative rings with identity and all modules are unital. Let R be a ring. An R-module M is called a multiplication module if for every submodule N of M there esists an ideal I of R such that N = IM. Clearly the ring R is a multiplication module as a module over itself. Also, it is well known that invertible and more generally profective ideals of R are multiplication R-modules (see [11, Theorem 1]).

  • PDF

ON COFINITELY CLOSED WEAK δ-SUPPLEMENTED MODULES

  • Sozen, Esra Ozturk
    • Honam Mathematical Journal
    • /
    • v.42 no.3
    • /
    • pp.511-520
    • /
    • 2020
  • A module M is called cofinitely closed weak δ-supplemented (briefly δ-ccws-module) if for any cofinite closed submodule N of M has a weak δ-supplement in M. In this paper we investigate the basic properties of δ-ccws modules. In the light of this study, we can list the main facts obtained as following: (1) Any cofinite closed direct summand of a δ-ccws module is also a δ-ccws module; (2) Let R be a left δ-V -ring. Then R is a δ-ccws module iff R is a ccws-module iff R is extending; (3) Any nonsingular homomorphic image of a δ-ccws-module is also a δ-ccws-module; (4) We characterize nonsingular δ-V -rings in which all nonsingular modules are δ-ccws.

PRIMARY DECOMPOSITION OF SUBMODULES OF A FREE MODULE OF FINITE RANK OVER A BÉZOUT DOMAIN

  • Fatemeh Mirzaei;Reza Nekooei
    • Bulletin of the Korean Mathematical Society
    • /
    • v.60 no.2
    • /
    • pp.475-484
    • /
    • 2023
  • Let R be a commutative ring with identity. In this paper, we characterize the prime submodules of a free R-module F of finite rank with at most n generators, when R is a GCD domain. Also, we show that if R is a Bézout domain, then every prime submodule with n generators is the row space of a prime matrix. Finally, we study the existence of primary decomposition of a submodule of F over a Bézout domain and characterize the minimal primary decomposition of this submodule.

PRIME M-IDEALS, M-PRIME SUBMODULES, M-PRIME RADICAL AND M-BAER'S LOWER NILRADICAL OF MODULES

  • Beachy, John A.;Behboodi, Mahmood;Yazdi, Faezeh
    • Journal of the Korean Mathematical Society
    • /
    • v.50 no.6
    • /
    • pp.1271-1290
    • /
    • 2013
  • Let M be a fixed left R-module. For a left R-module X, we introduce the notion of M-prime (resp. M-semiprime) submodule of X such that in the case M=R, it coincides with prime (resp. semiprime) submodule of X. Other concepts encountered in the general theory are M-$m$-system sets, M-$n$-system sets, M-prime radical and M-Baer's lower nilradical of modules. Relationships between these concepts and basic properties are established. In particular, we identify certain submodules of M, called "primeM-ideals", that play a role analogous to that of prime (two-sided) ideals in the ring R. Using this definition, we show that if M satisfies condition H (defined later) and $Hom_R(M,X){\neq}0$ for all modules X in the category ${\sigma}[M]$, then there is a one-to-one correspondence between isomorphism classes of indecomposable M-injective modules in ${\sigma}[M]$ and prime M-ideals of M. Also, we investigate the prime M-ideals, M-prime submodules and M-prime radical of Artinian modules.

ON 𝜙-SEMIPRIME SUBMODULES

  • Ebrahimpour, Mahdieh;Mirzaee, Fatemeh
    • Journal of the Korean Mathematical Society
    • /
    • v.54 no.4
    • /
    • pp.1099-1108
    • /
    • 2017
  • Let R be a commutative ring with non-zero identity and M be a unitary R-module. Let S(M) be the set of all submodules of M and ${\phi}:S(M){\rightarrow}S(M){\cup}\{{\emptyset}\}$ be a function. We say that a proper submodule P of M is a ${\phi}$-semiprime submodule if $r{\in}R$ and $x{\in}M$ with $r^2x{\in}P{\setminus}{\phi}(P)$ implies that $rx{\in}P$. In this paper, we investigate some properties of this class of sub-modules. Also, some characterizations of ${\phi}$-semiprime submodules are given.

COMMUTATIVE RINGS AND MODULES THAT ARE r-NOETHERIAN

  • Anebri, Adam;Mahdou, Najib;Tekir, Unsal
    • Bulletin of the Korean Mathematical Society
    • /
    • v.58 no.5
    • /
    • pp.1221-1233
    • /
    • 2021
  • In this paper, we introduce and investigate a new class of modules that is closely related to the class of Noetherian modules. Let R be a commutative ring and M be an R-module. We say that M is an r-Noetherian module if every r-submodule of M is finitely generated. Also, we call the ring R to be an r-Noetherian ring if R is an r-Noetherian R-module, or equivalently, every r-ideal of R is finitely generated. We show that many properties of Noetherian modules are also true for r-Noetherian modules. Moreover, we extend the concept of weakly Noetherian rings to the category of modules and we characterize Noetherian modules in terms of r-Noetherian and weakly Noetherian modules. Finally, we use the idealization construction to give non-trivial examples of r-Noetherian rings that are not Noetherian.