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MULTIPLICATION MODULES AND
CHARACTERISTIC SUBMODULES

YOUNG S00 PARK AND CHANG W00 CHOI

1. Introduction

In this note all rings are commutative rings with identity and all
modules are unital. Let R be a ring. An R-module M is called a
multiplication module if for every submodule .V of M there exists an
ideal I of R such that N = IM. Clearly the ring R is a multiplication
module as a module over itself. Also, it is weil known that invertible
and more generally projective ideals of R are multiplication R-modules
(see [11, Theorem 1]).

If N i1s a submodule of M, then (N : M) denotes the ideal Anng
(M/N) of R, that is (N : M) = {r € R:rM C N}. Let N be a
submodule of a multiplication module M. Then there exists an ideal
I of R such that N = IM. Note that I C (N : M) and N = IM C
(N :M)M C N sothat N = (N : M)M. It follows that an R-module
M is a multiplication module if and only if ¥ = (N : M )M for all
submodules N of M.

Let R be aring and let M be an R-module. A submodule N of M will
be called characteristic submodule if p(N) = N for all automorphisms
@ of M. The R-module M will be called finitely projective if for every
finitely generated submodule N of M, there exist a positive integer n,
elements m; € M (1 < i € n) and R-homomorphisms §; : M — R
(1 €4 < n)such that + = 8;(x)ymy + -+ + 8, (x)m,, for all x in N.
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Note that any finitely generated finitely projective module is projective
by the Dual Basis Lemma.

In this paper, we give some characterizations of finitely generated
multiplication modules in terms of characteristic submodules and finitely
projective R-modules (see Theorem 2 and Theorem 5). Moreover, we
investigate further the relationship between multiplication modules and
small submodules (see Theorem 9 and Theorem 10). Finally, we remark
that we shall adopt the following notations : R is an arbitrary ring, M
is an R-module, 4 = Anng(M) = {r € R:rM = 0} is the annihilator
of M. End(grM) and Aut( gM) denote the endomorphism ring and au-
tomorphism group of an R-module M, respectively. In addition we set
Mt = Homgp(M, R/A).

2. Multiplication modules and characteristic submodules

Our starting point is the following easy lemma about characteristic
submodule.

LEMMA 1. Let M be a multiplication module. Then every submod-
ule of M is a characteristic submodule.

Proof. Let N be any submodule of M. Then N = IM for some ideal
Tof R. Let p € Aut(pM). Then o(N) = p(IM) = Ip(M)=IM = N.

THEOREM 2. Let M be a finitely generated module. Then the fol-
lowing statements are equivalent.
(i) M is a multiplication module. .
(ii) Every submodule of every homomorphic image of M is a char-
acteristic.

Proof. (i) = (ii) : By Lemma 1, since every homomorphic image
of M is a multiplication module.

(ii) = (i) : Let P be any maximal ideal of R. Then M/PM is
a vector space over the field R/P, and hence M/PM is completely
reducible. Since every submodule of M/PM is characteristic, it follows
that M/PM is cyclic (see [4, Corollary 10]). By [2, Corollary 1.5 | , M

is a multiplication module.

The next two results are well known in [9].
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LEMMA 3. Suppose that M is a multiplication module. Then M is
a finitely projective (R/A)-module.

LEMMA 4. Suppose that Aut(pM) is commutative. Then
01(m1)82(ma)ma = 01(m3)02(my ),

forallm; € M,8; e M+ (1<:<3,1<;<2).

Let R be aring and M an R-module. Then M is said to be distribu-
twe f XN(Y +2)=(XNY)+(XnNn2Z), for all submodules X, 2
of M. A ring R is said to be arithmetical if R considered as a module
over itself is distributive.

THEOREM 5. Let R be an arithmetical ring and M a finitely gener-
ated R-module. Then the following statements are equivalent.

(1) M is a distributive module.

(11) M is a multiplication module.

(ii1) M is a finitely projective (R/A)-module and every submodule
of M is characteristic.

(iv) M is a finitely projective (R/A)-module and Aut(rM) is com-
mutative.

(v) M is a finitely projective (R/A)-module and 8(m)M C Rmn for
all m € M and every R-homomorphism 6 : M — R/A.

Proof. (1) = (i1) : Since M is a finitely generated distributive mod-
ule, N = (N : M)M for any submodule N of M by [5, Lemnma 3.2} and
hence M is a multiplication module.

(ii) == (i) : By [6, Proposition 1.2].

(ii) = (iii) : By Lemma 1 and Lemma 3.

(1) == (iv) : Clearly Aut(rM) is a group under the operation of
composition of functions. Let f, ¢ € Aut(gM) and let m € M. Because
Rm is a characteristic submodule of A, there exists elements r,s € R
such that f(m) = rm and ¢(m) = sm. Thus

fg(m) = f(sm) =r(sm) = (rs)m = (sr)m = s(rm) = gf(m).
Hence Aut(gM) is a commutative group.
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(iv) => (v) : Let me M, 8 € M*. Let y € M. Then
y = 61(y)m1 + 02(y)ma2 + - - + 0u(y)my,

for some positive integer n, m; € M,0; € M* (1 <:¢ < n). By Lemma
4,

6(m)y = 0(m)6;(y)my1 + 6(m)82(y)m2 + - - - + 8(m)6,.(y)mn
= 6(y)b,(m1)m + 8(y )0 (m2)m + - - + 8(y)n(mn)m € Rm.

This implies 8(m)M C Rm.

(v) = (ii) : Let m € M. Since M is a finitely projective (R/A4)-
module, there exist a positive integer n, m; € M and §; € M1(1 <: <
n) such that

m=6;(m)m; + -+ O (m)m,.

By hypothesis, 8;(m) € (Rm: M) (1 <i<n). Thusm € (Rm: M)M
for all m € M. By [2, Proposition 1.1], M is a multiplication module.

REMARK. Let R be a commutative ring with 1 and M be a unitary
R-module. Observe that End(rM) is not commutative in general, for
example, if M is free of rank n > 1, then End(gM) is isomorphic
to the ring of n x n matrices with entries in R, and this ring is not
commutative. (See also, (7] p.67. Exercise 3).

On the other hand, if M is a multiplication module, then End(pM)
is commutative, because every submodule of M is fullv invariant (see,
for example, [4, Proposition T}).

3. Multiplication modules and small submodules

A chain of submodules of a module M is a sequence (M;) (1 <1 < n)
of submodules of M such that M = My D M; O --- O M, = 0 (strict
inclusions). The length of the chain is n (the number of “links”). A
composition series of M is a-maximal chain, this is one in which no
extra submodules can be inserted : this is equivalent to saying that each
quotient M;_1/M; (1 < 1 < n) is simple (that is, has no submodules
except 0 and itself ).
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THEOREM 6. Let M be a multiplication module and let R be a ring
satisfying the descending chain condition on ideals containing Anng(M),

Proof. Let A} O A2 D --- be any descending chain on submodules

of M. Then
(A1 M)D (A2 M)D---.

Since Annp(M) = (0O : M) C (A, : M) for all ¢, there exists an integer
n such that (4, : M) = (4; : M) for all ¢ > n by hypothesis. This
implies that (A, : M)M = (4, : M)M for all + > n. Since M is a
multiplication module, 4, = A; for all ¢ > n. Thus M is artinian.
Since artinian multiplication module is cyclic 2, Corollary 2.9], M is
cyclic and hence R/(Anng(M)) & M. Thus the ring R/(Anng(MM)) is
artinian. Since any artinian ring is noetherian. it is also noetherian so
that M is noetherian. Thus M satisfies both chain conditions. By [1,
p.77, Proposition 6.8], M has a composition seties.

Theorem 6 has the following two corollaries and their proofs are
immediate by the proof of the theorem.

-

COROLLARY 7. Let M be a multiplication module and let R be a
ring satisfying the hypothesis of Theorem 6, then M has a finite length.

COROLLARY 8. Let M be a multiplication module and let R be a
ring satisfying the hypothesis of Theorem 6, then M is noetherian.

A submodule I of a module M is called small (or superflous) in
M provided for all submodules L of M, &' + L = M implies L = M.
An ideal of a ring R is called small if it is a small submodule of R
where considered as an R-module. On the other hand. if every proper
submodule of an R-module Af is small in M, then M is called a hollow
module.

THEOREM 9. Let M be a finitely generate:l faithful multiplication
R-module. Then M is hollow if and only if every proper ideal of R is
small.

Proof. Suppose M is hollow. Let I be any proper ideal of R such

that I + J = R for all ideals J of R. Then
(I+ )M =IM+JM =M.
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Since I is proper, IM # M by [2, Theorem 3.1]. By hypothesis, JM =
M and hence J = R, again by [2, Theorem 3.1]. Therefore I is small.

Conversely, let A(# M) and B be any submodule of M with A+ B =
M. Then A=(A: M)M and B = (B : M)M. Thus

M=A+B=(A:M)M+(B:M)M=((A: M)+ (B:M)M

This implies that (A : M) + (B : M) = R by [2, Theorem 3.1]. If
(A: M)=R,then A = (4: M)M = RM = M. This is a contradiction
and so (A : M) # R. By Lypothesis, (B : M) = R. This shows that
B =(B:M)M = RM = M. Accordingly M is hollow.

THEOREM 10. Let M be a finitely generated faithful multiplication
R-module. A submodule N of M is small if and only if there exists a

small ideal I of R such that N = I M.

Proof. Suppose N is a small submodule of A{. Then there exists an
ideal A of R such that N = AM. Suppose A + B = R for all ideals B
of R. Then

N+ BM =AM + BM = (A+ B)M = RM = M.

By hypothesis, BM = M and hence B = R (see [2, Theorem 3.1}).
This implies that 4 is a small ideal of I2.

Conversely, suppose that I is a small ideal of R. Let C be a submod-
ule of M such that IAM + C = M. It is sufficient to show that C' = M.
Since M is a multiplication module, there exists an ideal I of R such

that ¢ = KM and hence
(I+ K)M =IM + KM = M.

By [2, Theorem 3.1], I + ' = R and hence ¥ = R. Thus C' = M.
We close this section withi one more result about projective module.

THEOREM 11. Let M be an R-module generated by the set {a;|j €
I} and let S' = {x;]j € I}. Let F be the free R-module generated by
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S'. If M is a projective R-module, then F = Im8 @ Kerf for some
8 € End(pM).

Proof. Consider the exact sequence
O-—NKN-—F—M-—7O0

where f : F — M is defined on the generators by f(z;) = a; and
K = Kerf. It is clear that ¥ is an R-module which is a submodule of
F. Since M is a projective module, there exists § € End(gF’) such that
6? = 6 (see [8], p.18). First we show that F := Im# 4 Kerf. Clearly
Imf + Kerf C F. Let « € F, then 8(a) = U for some b € F. This
implies

6(a) = 6°*(a) = 8(b)

and hence a € Kerf+Imé. It can easily be checked that ImfNNerf =
0. This completes the proof.

COROLLARY 12. Let M and F be R-modules satisfying the hypoth-
esis of Theorem 11. If M is a projective R-module, then there exists

g € End(grF) such that fgf = f for some f € End(rF).
Proof. By Theorem 11 and [12, Lemma 3.1}.
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