• Title/Summary/Keyword: r-DNA.

Search Result 3,648, Processing Time 0.038 seconds

Antioxidant Properties in Microbial Fermentation Products of Lonicera japonica Thunb. Extract (금은화 추출물을 이용한 미생물 발효 생성물의 항산화 특성)

  • Shin, Jung-Hee;Yoo, Sun-Kyun
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.22 no.1
    • /
    • pp.95-102
    • /
    • 2012
  • The purpose of this study is to investigate antioxidant properties in microbial fermentation products of Lonicera japonica Thunb extract. The bacterium Lactobacillus plantarum NHP1 was isolated from conventional fermented foods. Modern pharmacological studies show that Lonicera japonica Thunb and its active principles of wide pharmacological actions. For instance, they show a strong efficacy in antibacterial, anti-inflammatory, antiviral, anti-endotoxin, blood fat reducing, antipyretic, and antioxidant activities. The extract of Lonicera japonica Thunb was obtained by extracting dried Lonicera japonica Thunb using either hot water or 70% ethanol as a solvent. Fermentation was performed in a 2L fermentor containing 1.2 L of extractat conditions of $30^{\circ}C$ and 100 rpm for 48 hr. The amount of cholorogenic acid was $2.65{\mu}g/g$ in hot water extract. The total phenolic content (GAE, gallic acid equivalent) in hot water and 70% ethanol were $56.5{\pm}4.9$ GAE mg/g and $72.7{\pm}5.3$ GAE mg/g, respectively. After fermentation, the phenolic content increased to 30.2% in hot water and 12.9% in ethanol extract. In the same manner, flavonoid content increased to more than 75% regardless of extract solvent. ABTS (2,2-azino-bis-3-ethylbenzthiazoline-6-sulfonic acid) value noticeably increased to 50% after fermentation.

Phylogenetic relationships of Lyophyllum decastes on the based of ITS region sequences and RAPD (잿빛만가닥버섯(Lyophyllum decastes)의 ITS 영역염기서열 및 RAPD에 의한 계통학적 유연관계 분석)

  • Woo, Sung-Mi;Park, Yong-Hwan;Yoo, Young-Bok;Shin, Pyung-Gyun;Jang, Kab Yeul;Jin, Yong-Ju;Sung, Jae-Mo
    • Journal of Mushroom
    • /
    • v.7 no.3
    • /
    • pp.98-104
    • /
    • 2009
  • Phylogenetic relationships of Hypsizygus mamoreus and Lyophyllum decastes artificial cultivated using ITS sequences and RAPD polymorphism have been analyzed. Based on ITS region sequences of 14 strains, we could divide into 2 group as group1 to Hypsizygus mamoreus and the control isolated group2 to Lyophyllum decastes were identified as the same species. Restrict analysis of rDNA ITS region which was amplified by PCR, 14 collected strains could be classified into 4 clusters. There was approximately 58% genetic similarity between cluster I(SPA 100, 101, 102) and cluster II(SPA 200, 208 and SPA 201, 202), 41% between cluster III(SPA 104, 103, 203) and cluster IV(SPA 204, 206, 207, 205) by BLAST analysis. RAPD polymorphisms were used to analyze the species diversity of artificially cultivated Lyophyllum decastes SPA 202. As a result, similarity between SPA 202 and SPA 203 was 75%, at the same time, similarity between SPA 202 and Pleurotus eryngii SPA 103 and SPA 104 was 65%.

  • PDF

Antitumor Activity of 7-[2-(N-Isopropylamino)ethyl]-(20s)-camptothecin, CKD602, as a Potent DNA Topoisomerase I Inhibitor

  • Lee, Jun-Hee;Lee, Ju-Mong;Kim, Joon-Kyum;Ahn, Soon-Kil;Lee, Sang-Joon;Kim, Mie-Young;Jew, Sang-Sup;Park, Jae-Gab;Hong, Chung-Il
    • Archives of Pharmacal Research
    • /
    • v.21 no.5
    • /
    • pp.581-590
    • /
    • 1998
  • We developed a novel water-soluble camptothecin analobue, CKD602, and evaluated the inhibition of topoisomerase I and the antitumor activities against mammalian tumor cells and human tumor xenografts. CKD602 was a nanomolar inhibitor of the topoisomerase I enzyme in the cleavable complex assay. CKD602 was found to be 3 times and slightly more potent than topotecan and camptothecin as inhibitors of topoisomerase, respecitively. In tumor cell cytotoxicity, CKD602 was more potent than topotecan in 14 out of 26 human cancer cell lines tested, while it was comparable to camptothecin. CKD602 was tested for the in vivo antitumor activity against the human tumor xenograft models. CKD602 was able to imduce regression of established HT-29, WIDR and CX-1 colon tumors, LX-1 lung tumor, MX-1 breast tumor and SKOV-3 ovarian tumor as much as 80, 94, 76, 67, 87% and 88%, respectively, with comparable body weight changes to those of topotecan. Also the therapeutic margin (R/Emax: maximum tolerance dose/$ED-{58}$) of CKD602 was significantly higher than that of topotecan by 4 times. Efficacy was determined at the maximal tolerated dose levels using schedule dependent i.p. administration in mice bearing L1210 leukemia. On a Q4dx4 (every 4 day for 4 doses) schedule, the maximum tolerated dose (MTD) was 25 mg/kg per administration, which caused great weight loss and lethality in <5% tumor bearing mouse. this schedule brought significant increase in life span (ILS), 212%, with 33% of long-term survivals. The ex vivo antitumor activity of CKD602 was compared with that of topotecan and the mean antitumor index (ATI) values recorded for CKD602 were significantly higher than that noted for topotecan. From these results, CKD602 warrants further clinical investigations as a potent inhibitor of topoisomerase I.

  • PDF

The interaction of serum albumin with ginsenoside Rh2 resulted in the downregulation of ginsenoside Rh2 cytotoxicity

  • Lin, Yingjia;Li, Yang;Song, Zhi-Guang;Zhu, Hongyan;Jin, Ying-Hua
    • Journal of Ginseng Research
    • /
    • v.41 no.3
    • /
    • pp.330-338
    • /
    • 2017
  • Background: Ginsenoside Rh2 (G-Rh2) is a ginseng saponin that is widely investigated because of its remarkable antitumor activity. However, the molecular mechanism by which (20S) G-Rh2 triggers its functions and how target animals avoid its cytotoxic action remains largely unknown. Methods: Phage display was used to screen the human targets of (20S) G-Rh2. Fluorescence spectroscopy and UV-visible absorption spectroscopy were used to confirm the interaction of candidate target proteins and (20S) G-Rh2. Molecular docking was utilized to calculate the estimated free energy of binding and to structurally visualize their interactions. MTT assay and immunoblotting were used to assess whether human serum albumin (HSA), bovine serum albumin (BSA), and bovine serum can reduce the cytotoxic activity of (20S) G-Rh2 in HepG2 cells. Results: In phage display, (20S) G-Rh2-beads and (20R) G-Rh2-beads were combined with numerous kinds of phages, and a total of 111 different human complementary DNAs (cDNA) were identified, including HSA which had the highest rate. The binding constant and number of binding site in the interaction between (20S)-Rh2 and HSA were $3.5{\times}10^5M^{-1}$ and 1, and those in the interaction between (20S) G-Rh2 and BSA were $1.4{\times}10^5M^{-1}$ and 1. The quenching mechanism is static quenching. HSA, BSA and bovine serum significantly reduced the proapoptotic effect of (20S) G-Rh2. Conclusion: HSA and BSA interact with (20S) G-Rh2. Serum inhibited the activity of (20S) G-Rh2 mainly due to the interaction between (20S) G-Rh2 and serum albumin (SA). This study proposes that HSA may enhance (20S) G-Rh2 water solubility, and thus might be used as nanoparticles in the (20S) G-Rh2 delivery process.

Identification of Microorganisms, Cladosporium sp. and Sterigmatomyces sp., Proliferated on the Surface of Traditional Soy Sauce, and the Effect of NaCl Concentration on Their Enzymatic Activity (전통간장으로부터 분리한 Cladosporium sp.과 Sterigmatomyces sp. 미생물의 동정 및 NaCl 농도에 따른 미생물 효소활성 분석)

  • Lee, Nam-Keun;Ryu, Young-Jun;Yeo, In-Cheol;Park, Sung-Joon;Kwon, Ki-Ok;Cha, Chang-Jun;Hahm, Young-Tae
    • Korean Journal of Food Science and Technology
    • /
    • v.44 no.4
    • /
    • pp.488-492
    • /
    • 2012
  • Two strains, traditionally referred to as rock flower (Bawhi-kot) and buckwheat flower (Memil-kot or Chile-Kot), were isolated from stored traditional soy sauce and were identified by using the 18S ITS1/4 region sequences. The rock flower strain showed 99% of similarity with Cladosporium sp. and buckwheat flower strain was 99% identical with yeast Sterigmatomyces halophilus. Both strains were tentatively named Cladosporium sp. NK1 and Sterigmatomyces halophilus NK2, respectively. The optimal growth pHs and temperatures of both strains in a YPD broth medium were in the range of pH 5.0 to 7.0 and 22 to $27^{\circ}C$. Both strains were able to grow in more than 20% of NaCl. In the enzyme activity assay, high protease activity of Cladosporium sp. NK1 and S. halophilus NK2 were obtained in YPD containing 10% of NaCl. High amylase activities of both stains were in 15% and 5% of NaCl, respectively. Lipase activity was, however, not detected in both strains.

Isolation of Acinetobacter calcoaceticus BP-2 Capable of Degradation of Bisphenol A (Bisphenol A 분해균주 Acinetobacter calcoaceticus BP-2의 분리 및 bisphenol A 분해 특성)

  • Kwon, Gi-Seok;Kim, Dong-Geol;Lee, Jung-Bok;Shin, Kee-Sun;Kum, Eun-Joo;Sohn, Ho-Yong
    • Journal of Life Science
    • /
    • v.16 no.7 s.80
    • /
    • pp.1158-1163
    • /
    • 2006
  • Bisphenol A (BPA), 2,2-bis(4-hydroxyphenyl) propane, has been widely used as a monomer for production of epoxy resins and polycarbonate plastics, and final products of BPA include adhesives, protective coatings, paints, optical lens, building materials, compact disks and other electrical parts. Since BPA is a toxic chemical to elicit acute cell cytotoxicity and chronic endocrine disrupting activity, the degradation of BPA has been focused during last decades. To overcome the problem of photo-, and chemical-degradation of BPA, in this study, a bacterium that is able to biodegrade BPA, was isolated. The bacterium, isolated froln the soil of plastic factory, was identified as Acinetobacter calcoaceticus (strain BP-2) based on physiological and 16S rDNA sequencing analysis. A. calcoaceticus BP-2 was able to grow in the presence of $1140{\mu}g\;ml^{-1}$ BPA. Biodegradation experiments showed that BP-2 mineralized BPA via 4-hydroxybenzoic acid and 4-hydroxyacetophenone, and average degradation rate was $53.3{\mu}g\;ml^{-1}\;day^{-1}$ under optimal conditions (pH 7 and $30^{\circ}C$). In high density resting cell $(3.5g-dcw.1^{-1})$ experiments, the maximal degradation rate was increased to $89.7{\mu}g\;ml^{-1}\;h^{-1}$. Our results suggest that BP-2 has high potential as a catalyst for practical BPA bioremediation.

Characterization of heterotrophic nitrification and aerobic denitrification by Alcaligenes faecalis NS13 (Alcaligenes faecalis NS13에 의한 호기성 종속영양 질산화 및 탈질화)

  • Jung, Taeck-Kyung;Ra, Chang-Six;Joh, Ki-Seong;Song, Hong-Gyu
    • Korean Journal of Microbiology
    • /
    • v.52 no.2
    • /
    • pp.166-174
    • /
    • 2016
  • In order to find an efficient bacterial strain that can carry out nitrification and denitrification simultaneously, we isolated many heterotrophic nitrifying bacteria from wastewater treatment plant. One of isolates NS13 showed high removal rate of ammonium and was identified as Alcaligenes faecalis by analysis of its 16S rDNA sequence, carbon source utilization and fatty acids composition. This bacterium could remove over 99% of ammonium in a heterotrophic medium containing 140 mg/L of ammonium at pH 6-9, $25-37^{\circ}C$ and 0-4% of salt concentrations within 2 days. It showed even higher ammonium removal at higher initial ammonium concentration in the medium. A. faecalis NS13 could also reduce nitrate and nitrous oxide by nitrate reductase and nitrous oxide reductase, respectively, which was confirmed by detection of nitrate reductase gene, napA, and nitrous oxide reducase gene, nosZ, by PCR. One of metabolic intermediate of denitrification, $N_2O$ was detected from headspace of bacterial culture. Based on analysis of all nitrogen compounds in the bacterial culture, 42.8% of initial nitrogen seemed to be lost as nitrogen gas, and 46.4% of nitrogen was assimilated into bacterial biomass which can be removed as sludge in treatment processes. This bacterium was speculated to perform heterotrophic nitrification and aerobic denitrification simultaneously, and may be utilized for N removal in wastewater treatment processes.

Purification and Characterization of Bacillus subtilis JS-17 Collagenase. (Bacillus subtilis JS-17이 생산하는 Collagenase의 정제 및 특성)

  • Lim Kyoung-Suk;Son Shung-Hui;Kang Ho Young;Jun Hong-Ki
    • Journal of Life Science
    • /
    • v.15 no.4 s.71
    • /
    • pp.657-663
    • /
    • 2005
  • Collagenases are generally defined as enzymes that are capable of degrading the polypeptide backbone of native collagen under conditions that do not denature the protein. An extracellular collagenase-producing bacterial strain was isolated from kimchi and identified to be Bacillus subtilis JS-17 through morphological, cultural, biochemical characteristics and 16S rDNA sequence analysis. Optimum culture condition of Bacillus subtilis JS-17 for the production of collagenase was $1.5\%$ fructose, $1\%$ yeast extract, $0.5\%\;K_2HPO_4,\;0.4\%\;KH_2PO_4,\;0.01\%\;MgSO_4\cdot7H_2O,\;0.01\%\; MnSO_4\cdot4H_2O,\;,0.1\%$ citrate and $0.1\%\;CaCl_2$. The production of collagenase was optimal at $30^{\circ}C$ for 72 hr. A collagenase was isolated from the culture filtrate of Bacillus subtilis JS-17. The enzyme was purified using Amberlite IRA-900 column chromatography, Sephacryl S-300 HR column chromatography and DEAE-Sephadex A-50 column chromatography The purified collagenase has an specific activity 192.1 units/mg. The molecular weight of the purified enzyme was estimated to be 28 kDa by SDS-PACE. The purified collagenase has $100\%$ activity up to $55^{\circ}C$.

Nematicidal Activity of Kojic Acid Produced by Aspergillus oryzae against Meloidogyne incognita

  • Kim, Tae Yoon;Jang, Ja Yeong;Jeon, Sun Jeong;Lee, Hye Won;Bae, Chang-Hwan;Yeo, Joo Hong;Lee, Hyang Burm;Kim, In Seon;Park, Hae Woong;Kim, Jin-Cheol
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.8
    • /
    • pp.1383-1391
    • /
    • 2016
  • The fungal strain EML-DML3PNa1 isolated from leaf of white dogwood (Cornus alba L.) showed strong nematicidal activity with juvenile mortality of 87.6% at a concentration of 20% fermentation broth filtrate at 3 days after treatment. The active fungal strain was identified as Aspergillus oryzae, which belongs to section Flavi, based on the morphological characteristics and sequence analysis of the ITS rDNA, calmodulin (CaM), and β-tubulin (BenA) genes. The strain reduced the pH value to 5.62 after 7 days of incubation. Organic acid analysis revealed the presence of citric acid (515.0 mg/kg), malic acid (506.6 mg/kg), and fumaric acid (21.7 mg/kg). The three organic acids showed moderate nematicidal activities, but the mixture of citric acid, malic acid, and fumaric acid did not exhibit the full nematicidal activity of the culture filtrate of EML- DML3PNa1. Bioassay-guided fractionation coupled with 1H- and 13C-NMR and EI-MS analyses led to identification of kojic acid as the major nematicidal metabolite. Kojic acid exhibited dose-dependent mortality and inhibited the hatchability of M. incognita, showing EC50 values of 195.2 μg/ml and 238.3 μg/ml, respectively, at 72 h post-exposure. These results suggest that A. oryzae EML-DML3PNa1 and kojic acid have potential as a biological control agent against M. incognita.

Selection and Identification of Phytohormones and Antifungal Substances Simultaneously Producing Plant Growth Promoting Rhizobacteria from Microbial Agent Treated Red-pepper Fields (미생물제제시용 고추경작지로부터 식물생장홀몬과 항진균물질을 동시에 생산하는 식물생장촉진근권세균의 선발 및 동정)

  • Jung, Byung-Kwon;Lim, Jong-Hui;An, Chang-Hwan;Kim, Yo-Hwan;Kim, Sang-Dal
    • Microbiology and Biotechnology Letters
    • /
    • v.40 no.3
    • /
    • pp.190-196
    • /
    • 2012
  • In this study, a total of more than 1,000 bacteria, including 739 species of aerobic bacteria, 80 species of urease producing bacteria and 303 species of photosynthetic bacteria, were isolated from red-pepper field soils located in the Gyeongsan Province of the Republic of Korea. Amongst these, 158 species of aerobic bacteria, 70 species of urease producing bacteria and 228 species of photosynthetic bacteria were found to be auxin producing soil bacteria through quantification analysis with the Salkowski test. The latter groupings were then tested for antifungal activities to ${\beta}$-Glucanase and siderophore using CMC congo red agar and CAS blue agar media. In addition, the selected strains were examined for antifungal activity against various phytopathogenic fungi on PDN agar media. Six strains; BCB14, BCB17, C10, HA46, HA143, and HJ5, were noted for their ability to both produce auxin and act as antifungal substances. 16S rDNA sequence comparison analyses of these six strains identified them as Bacillus subtilis BCB14, B. methylotrophicus BCB17, B. methylotrophicus C10, B. sonorensis HA46, B. subtilis HA143, and B. safensis HJ5.