Browse > Article
http://dx.doi.org/10.4014/jmb.1603.03040

Nematicidal Activity of Kojic Acid Produced by Aspergillus oryzae against Meloidogyne incognita  

Kim, Tae Yoon (Department of Agricultural Chemistry, Institute of Environmentally Friendly Agriculture, College of Agriculture and Life Sciences, Chonnam National University)
Jang, Ja Yeong (Department of Agricultural Chemistry, Institute of Environmentally Friendly Agriculture, College of Agriculture and Life Sciences, Chonnam National University)
Jeon, Sun Jeong (Department of Agricultural Chemistry, Institute of Environmentally Friendly Agriculture, College of Agriculture and Life Sciences, Chonnam National University)
Lee, Hye Won (Department of Agricultural Chemistry, Institute of Environmentally Friendly Agriculture, College of Agriculture and Life Sciences, Chonnam National University)
Bae, Chang-Hwan (Biological and Genetic Resources Assessment Division, National Institute of Biological Resources)
Yeo, Joo Hong (Biological and Genetic Resources Assessment Division, National Institute of Biological Resources)
Lee, Hyang Burm (Department of Agricultural Chemistry, Institute of Environmentally Friendly Agriculture, College of Agriculture and Life Sciences, Chonnam National University)
Kim, In Seon (Department of Agricultural Chemistry, Institute of Environmentally Friendly Agriculture, College of Agriculture and Life Sciences, Chonnam National University)
Park, Hae Woong (World Institute of Kimchi, an Annex of Korea Food Research Institute)
Kim, Jin-Cheol (Department of Agricultural Chemistry, Institute of Environmentally Friendly Agriculture, College of Agriculture and Life Sciences, Chonnam National University)
Publication Information
Journal of Microbiology and Biotechnology / v.26, no.8, 2016 , pp. 1383-1391 More about this Journal
Abstract
The fungal strain EML-DML3PNa1 isolated from leaf of white dogwood (Cornus alba L.) showed strong nematicidal activity with juvenile mortality of 87.6% at a concentration of 20% fermentation broth filtrate at 3 days after treatment. The active fungal strain was identified as Aspergillus oryzae, which belongs to section Flavi, based on the morphological characteristics and sequence analysis of the ITS rDNA, calmodulin (CaM), and β-tubulin (BenA) genes. The strain reduced the pH value to 5.62 after 7 days of incubation. Organic acid analysis revealed the presence of citric acid (515.0 mg/kg), malic acid (506.6 mg/kg), and fumaric acid (21.7 mg/kg). The three organic acids showed moderate nematicidal activities, but the mixture of citric acid, malic acid, and fumaric acid did not exhibit the full nematicidal activity of the culture filtrate of EML- DML3PNa1. Bioassay-guided fractionation coupled with 1H- and 13C-NMR and EI-MS analyses led to identification of kojic acid as the major nematicidal metabolite. Kojic acid exhibited dose-dependent mortality and inhibited the hatchability of M. incognita, showing EC50 values of 195.2 μg/ml and 238.3 μg/ml, respectively, at 72 h post-exposure. These results suggest that A. oryzae EML-DML3PNa1 and kojic acid have potential as a biological control agent against M. incognita.
Keywords
Meloidogyne incognita; nematicidal activity; kojic acid; Aspergillus oryzae;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Zuckerman BM, Matheny M, Acosta N. 1994. Control of plant-parasitic nematodes by a nematicidal strain of Aspergillus niger. J. Chem. Ecol. 20: 33-43.   DOI
2 Abbott W. 1987. A method of computing the effectiveness of an insecticide. J. Am. Mosq. Control Assoc. 3: 302-303.
3 Abdel-Rahman FH, Clark S, Saleh MA. 2008. Natural organic compounds as alternative to methyl bromide for nematodes control. J. Environ. Sci. Health B 43: 680-685.   DOI
4 Blumenthal CZ. 2004. Production of toxic metabolites in Aspergillus niger, Aspergillus oryzae, and Trichoderma reesei: justification of mycotoxin testing in food grade enzyme preparations derived from the three fungi. Regul. Toxicol. Pharmacol. 39: 214-228.   DOI
5 Aissani N. 2014. Nematicidal, antimicrobial and acaricidal activity of plant secondary metabolites. Degree of European Doctor of Philosophy, University of Cagliari, Cagliari, Italy.
6 Aytemir MD, Ozcelik B. 2010. A study of cytotoxicity of novel chlorokojic acid derivatives with their antimicrobial and antiviral activities. Eur. J. Med. Chem. 45: 4089-4095.   DOI
7 Bansal R, Bajaj A. 2003. Effect of volatile fatty acids on embryogenesis and hatching of Meloidogyne incognita eggs. Nematol. Mediterr. 33: 101-105.
8 Browning M, Wallace DB, Dawson C, Alm SR, Amador JA. 2006. Potential of butyric acid for control of soil-borne fungal pathogens and nematodes affecting strawberries. Soil Biol. Biochem. 38: 401-404.   DOI
9 Burdock GA, Soni MG, Carabin IG. 2001. Evaluation of health aspects of kojic acid in food. Regul. Toxicol. Pharmacol. 33: 80-101.   DOI
10 Cayrol JC, Djian C, Pijarowski L. 1989. Study of the nematicidal properties of the culture filtrate of the nematophagous fungus Paecilomyces lilacinus. Rev. Nematol. 12: 331-336.
11 Djian C, Pijarowski L, Ponchet M, Arpin N, Favre-Bonvin J. 1991. Acetic acid: a selective nematicidal metabolite from culture filtrates of Paecilomyces lilacinus (Thom) Samson and Trichoderma longibrachiatum Rifai. Nematologica 37: 101-112.   DOI
12 Huter OF. 2011. Use of natural products in the crop protection industry. Phytochem. Rev. 10: 185-194.   DOI
13 Dong LQ, Zhang KQ. 2006. Microbial control of plant-parasitic nematodes: a five-party interaction. Plant Soil 288: 31-45.   DOI
14 Hallmann J, Sikora R. 1996. Toxicity of fungal endophyte secondary metabolites to plant parasitic nematodes and soil-borne plant pathogenic fungi. Eur. J. Plant Pathol. 102: 155-162.   DOI
15 Glass NL, Donaldson GC. 1995. Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Appl. Environ. Microbiol. 61: 1323-1330.
16 Hall TA. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41: 95-98.
17 Higa Y, Kawabe M, Nabae K, Toda Y, Kitamoto S, Hara T, et al. 2007. Kojic acid-absence of tumor-initiating activity in rat liver, and of carcinogenic and photo-genotoxic potential in mouse skin. J. Toxicol. Sci 32: 143-159.   DOI
18 Hong SB, Go SJ, Shin HD, Frisvad JC, Samson RA. 2005. Polyphasic taxonomy of Aspergillus fumigatus and related species. Mycologia 97: 1316-1329.   DOI
19 Hu Y, Zhang W, Zhang P, Ruan W, Zhu X. 2012. Nematicidal activity of chaetoglobosin A produced by Chaetomium globosum NK102 against Meloidogyne incognita. J. Agric. Food Chem. 61: 41-46.   DOI
20 Hwang SM, Park MS, Kim JC, Jang KS, Choi YH, Choi GJ. 2014. Occurrence of Meloidogyne incognita infecting resistant cultivars and development of an efficient screening method for resistant tomato to the Mi-virulent nematode. Kor. J. Hortic. Sci. Technol. 32: 217-226.
21 Lee YS, Naning KW, Nguyen XH, Kim SB, Moon JH, Kim KY. 2014. Ovicidal activity of lactic acid produced by Lysobacter capsici YS1215 on eggs of root-knot nematodes, Meloidogyne incognita. J. Microbiol. Biotechnol. 24: 1510-1515.   DOI
22 Kerry BR. 2000. Rhizosphere interactions and the exploitation of microbial agents for the biological control of plant-parasitic nematodes. Annu. Rev. Phytopathol. 38: 423-441.   DOI
23 Lopez-Llorca LV, Jansson HB. 2006. Fungal parasites of invertebrates: multimodal biocontrol agents, pp. 310-335. In Robson GD, van West P, Gadd GM (eds.). Exploitation of Fungi. Cambridge University Press, Cambridge, UK.
24 Kwok OCH, Plattner R, Weisleder D, Wicklow DT. 1992. A nematicidal toxin from Pleurotus ostreatus NRRL 3526. J. Chem. Ecol. 18: 127-136.   DOI
25 Li GH, Yu ZF, Li X, Wang XB, Zheng LJ, Zhang KQ. 2007. Nematicidal metabolites produced by the endophytic fungus Geotrichum sp. AL4. Chem. Biodivers. 4: 1520-1524.   DOI
26 Manzanilla-Lopez RH, Esteves I, Finetti-Sialer MM, Hirsch PR, Ward E, Devonshire J, Hidalgo-Diaz L. 2013. Pochonia chlamydosporia: advances and challenges to improve its performance as a biological control agent of sedentary endoparasitic nematodes. J. Nematol. 45: 1-7.
27 Mayer A, Anke H, Sterner O. 1997. Omphalotin, a new cyclic peptide with potent nematicidal activity from Omphalotus olearius I. Fermentation and biological activity. Nat. Prod. Lett. 10: 25-32.   DOI
28 Mitkowski NA, Abawi GS. 2003. Root-knot nematodes. The Plant Health Instructor. DOI: 10.1094.PHI-I-2003-0917-01. Revised 2011.
29 Nguyen BC, Chompoo J, Tawata S. 2015. Insecticidal and nematicidal activities of novel mimosine derivatives. Molecules 20: 16741-16756   DOI
30 Oka Y, Nacar S, Putievsky E, Ravid U, Yaniv Z, Spiegel Y. 2000. Nematicidal activity of essential oils and their components against the root-knot nematode. Phytopathology 90: 710-715.   DOI
31 Saruno R, Kato F, Ikeno T. 1979. Kojic acid, a tyrosinase inhibitor from Aspergillus albus. Agric. Biol. Chem. 43: 1337-1338.
32 Onkendi EM, Kariuki GM, Marais M, Moleleki LN. 2014. The threat of root-knot nematodes (Meloidogyne spp.) in Africa: a review. Plant Pathol. 63: 727-737.   DOI
33 Owen NL, Hundley N. 2004. Endophytes - the chemical synthesizers inside plants. Sci. Prog. 87: 79-99.   DOI
34 Rho HS, Baek HS, Ahn SM, Kim DH, Chang IS. 2008. Synthesis of new anti-melanogenic compounds containing two molecules of kojic acid. Bull. Kor. Chem. Soc. 29: 1569-1571.   DOI
35 Schulz B, Boyle C, Draeger S, Rommert AK, Krohn K. 2002. Endophytic fungi: a source of novel biologically active secondary metabolites. Mycol. Res. 106: 996-1004.   DOI
36 Schwarz M, Kopcke B, Weber RWS, Sterner O, Anke H. 2004. 3-Hydroxypropionic acid as a nematicidal principle in endophytic fungi. Phytochemistry 65: 2239-2245.   DOI
37 Seiber JN, Coats J, Duke SO, Gross AD. 2014. Biopesticides: state of the art and future opportunities. J. Agric. Food Chem. 62: 11613-11619.   DOI
38 Sharone E, Chet I, Viterbo A, Bar-Eyal M, Nagan H, Samuels GJ, Spiegel Y. 2007. Parasitism of Trichoderma on Meloidogyne javanica and role of the gelatinous matrix. Eur. J. Plant Pathol. 118: 247-258.   DOI
39 Stadler M, Anke H, Sterner O. 1993. Linoleic acid - the nematicidal principle of several nematophagous fungi and its production in trap-forming submerged cultures. Arch. Microbiol. 160: 401-405.   DOI
40 Sun J, Wang H, Lu F, Du L, Wang G. 2008. The efficacy of nematicidal strain Syncephalastrum racemosum. Ann. Microbiol. 58: 369-373.   DOI
41 Thompson JD, Gibson TJ, Plewniak F, Jenmougin F, Higgins DG. 1997. The CLUSTAL_X Windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25: 4876-4882.   DOI
42 Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30: 2725-2729.   DOI
43 Viglierchio DR, Schmitt RV. 1983. On the methodology of nematode extraction from field samples: Baermann funnel modifications. J. Nematol. 15: 438-444.
44 Tian B, Yang J, Zhang KQ. 2007. Bacteria used in the biological control of plant-parasitic nematodes: populations, mechanisms of action, and future prospects. FEMS Microbiol. Ecol. 61: 197-213.   DOI
45 Tian X, Yao Y, Chen G, Mao Z, Wang X, Xie B. 2014. Suppression of Meloidogyne incognita by the endophytic fungus Acremonium implicatum from tomato root galls. Int. J. Pest Manag. 60: 239-245.   DOI
46 Varga J, Frisvad JC, Samson RA. 2011. Two new aflatoxin producing species, an overview of Aspergillus section Flavi. Stud. Mycol. 69: 57-80.   DOI
47 Warrior P, Rehberger LA, Beach M, Grau PA, Kirfman GW, Conley JM. 1999. Commercial development and introduction of DiTera, a new nematicide. Pest Manag. Sci. 55: 376-379.   DOI
48 White TJ, Bruns T, Lee S, Taylor J. 1990. Amplification and direct sequencing of fungal ribosomal RNA gene for phylogenetics, pp. 315-322. In Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds.). PCR Protocols: A Guide to Methods and Applications. Academic Press, San Diego, CA.
49 Xiong X, Pirrung MC. 2008. Modular synthesis of candidate indole-based insulin mimics by claisen rearrangement. Org. Lett. 10: 1151-1154.   DOI