DOI QR코드

DOI QR Code

Characterization of heterotrophic nitrification and aerobic denitrification by Alcaligenes faecalis NS13

Alcaligenes faecalis NS13에 의한 호기성 종속영양 질산화 및 탈질화

  • Jung, Taeck-Kyung (Department of Biological Sciences, Kangwon National University) ;
  • Ra, Chang-Six (Division of Animal Resource Science, Kangwon National University) ;
  • Joh, Ki-Seong (Department of Bioscience and Biotechnology, Hankuk University of Foreign Studies) ;
  • Song, Hong-Gyu (Department of Biological Sciences, Kangwon National University)
  • 정택경 (강원대학교 생명과학과) ;
  • 라창식 (강원대학교 동물자원과학부) ;
  • 조기성 (한국외국어대학교 생명공학과) ;
  • 송홍규 (강원대학교 생명과학과)
  • Received : 2016.03.31
  • Accepted : 2016.05.03
  • Published : 2016.06.30

Abstract

In order to find an efficient bacterial strain that can carry out nitrification and denitrification simultaneously, we isolated many heterotrophic nitrifying bacteria from wastewater treatment plant. One of isolates NS13 showed high removal rate of ammonium and was identified as Alcaligenes faecalis by analysis of its 16S rDNA sequence, carbon source utilization and fatty acids composition. This bacterium could remove over 99% of ammonium in a heterotrophic medium containing 140 mg/L of ammonium at pH 6-9, $25-37^{\circ}C$ and 0-4% of salt concentrations within 2 days. It showed even higher ammonium removal at higher initial ammonium concentration in the medium. A. faecalis NS13 could also reduce nitrate and nitrous oxide by nitrate reductase and nitrous oxide reductase, respectively, which was confirmed by detection of nitrate reductase gene, napA, and nitrous oxide reducase gene, nosZ, by PCR. One of metabolic intermediate of denitrification, $N_2O$ was detected from headspace of bacterial culture. Based on analysis of all nitrogen compounds in the bacterial culture, 42.8% of initial nitrogen seemed to be lost as nitrogen gas, and 46.4% of nitrogen was assimilated into bacterial biomass which can be removed as sludge in treatment processes. This bacterium was speculated to perform heterotrophic nitrification and aerobic denitrification simultaneously, and may be utilized for N removal in wastewater treatment processes.

호기적 조건에서 질산화와 탈질화를 동시에 진행하는 Alcaligenes faecalis NS13 균주를 분리하여 다양한 특성을 파악하였다. 이 균주는 $15-37^{\circ}C$ 온도에서 생장할 수 있으며 암모니움 산화율이 높고 고농도의 암모니움 환경에서도 생장이 저해되지 않고 초기 암모니움 농도 증가에 따라 제거량이 증가하였다. pH와 염분농도에 대해서도 내성 범위가 넓어 암모니움 산화가 영향을 받지 않았다. 질산화에 이어진 탈질화로 인해 질산염의 축적이 일어나지 않았으며 탈질화의 중간산물인 아산화질소는 미량 검출되었지만 배양 후 모든 질소 화합물을 측정한 결과 약 42.8%가 $N_2$로 전환된 것으로 추정되었다. 탈질화는 PCR 증폭을 통해서 탈질화에 관여하는 유전자 nitrate reductase gene, napA과 nitrous oxide reductase gene, nosZ의 존재로 뒷받침되었다. 또한 배지 내 질소의 46.4%가 NS13 균주로 동화되었기 때문에 폐수처리 시 질산화 및 탈질화 후에 슬러지로 처분한다면 실질적으로 89% 이상의 우수한 암모니움의 제거효과를 거둘 수 있을 것이다.

Keywords

References

  1. APHA, AWWA, and WPCF. 1995. Standard methods for the examination of water and wastewater, 19th ed. pp. 483-484. American Public Health Association, Washington, DC, USA.
  2. Castignetti, D. and Hollocher, T. 1981. Vigorous denitrification by a heterotrophic nitrifier of the genus Alcaligenes. Curr. Microbiol. 6, 229-231. https://doi.org/10.1007/BF01566978
  3. Chang, C.H. and Hao, O.J. 1996. Sequencing batch reactor system for nutrient removal: ORP and pH profiles. J. Chem. Technol. Biotechnol. 67, 27-38. https://doi.org/10.1002/(SICI)1097-4660(199609)67:1<27::AID-JCTB430>3.0.CO;2-2
  4. Chen, P., Li, J., Li, Q.X., Wang, Y., Li, S., Ren, T., and Wang, L. 2012. Simultaneous heterotrophic nitrification and aerobic denitrification by bacterium Rhodococcus sp. CPZ24. Bioresour. Technol. 116, 266-270. https://doi.org/10.1016/j.biortech.2012.02.050
  5. Enwall, K., Philippot, L., and Hallin, S. 2005. Activity and composition of the denitrifying bacterial community respond differently to long-term fertilization. Appl. Environ. Microbiol. 71, 8335-8343. https://doi.org/10.1128/AEM.71.12.8335-8343.2005
  6. Fdz-Polanco, F., Villaverde, S., and Garcia, P. 1994. Temperature effect on nitrifying bacteria activity in biofilters: activation and free ammonia inhibition. Water Sci. Technol. 30, 121-130.
  7. Ferree, M. and Shannon, R. 2001. Evaluation of a second derivative UV/visible spectroscopy technique for nitrate and total nitrogen analysis of wastewater samples. Water Res. 35, 327-332. https://doi.org/10.1016/S0043-1354(00)00222-0
  8. Foss, S., Heyen, U., and Harder, J. 1998. Alcaligenes defragrans sp. nov., description of four strains isolated on alkenoic monoterpenes (+)-menthene, ${\alpha}$-pinene, 2-carene, and ${\alpha}$-phellandrene and nitrate. Syst. Appl. Microbiol. 21, 237-244. https://doi.org/10.1016/S0723-2020(98)80028-3
  9. Frear, D. and Burrell, R. 1955. Spectrophotometric method for determining hydroxylamine reductase activity in higher plants. Anal. Chem. 27, 1664-1665. https://doi.org/10.1021/ac60106a054
  10. Garland, J. and Mills, A. 1991. Classification and characterization of heterotrophic microbial communities on the basis of patterns of community-level sole-carbon-source utilization. Appl. Environ. Microbiol. 57, 2351-2359.
  11. Klatte, T., Evans, L., Whitehead, R.N., and Cole, J. 2011. Four PCR primers necessary for the detection of periplasmic nitrate reductase genes in all groups of proteobacteria and in environmental DNA. Biochem. Soc. Trans. 39, 321-326. https://doi.org/10.1042/BST0390321
  12. Ludzack, F. and Noran, D. 1965. Tolerance of high salinities by conventional wastewater treatment processes. J. Water Poll. Control Fed. 37, 1404-1416.
  13. Nishio, T., Yoshikura, T., Mishima, H., Inouye, Z., and Itoh, H. 1998. Conditions for nitrification and denitrification by an immobilized heterotrophic nitrifying bacterium Alcaligenes faecalis OKK17. J. Ferment. Bioeng. 86, 351-356. https://doi.org/10.1016/S0922-338X(99)89003-5
  14. Padhi, S., Tripathy, S., Sen, R., Mahapatra, A., Mohanty, S., and Maiti, N. 2013. Characterisation of heterotrophic nitrifying and aerobic denitrifying Klebsiella pneumoniae CF-S9 strain for bioremediation of wastewater. Int. Biodet. Biodeg. 78, 67-73. https://doi.org/10.1016/j.ibiod.2013.01.001
  15. Rehfuss, M. and Urban, J. 2005. Alcaligenes faecalis subsp. phenolicus subsp. nov. a phenol-degrading, denitrifying bacterium isolated from a graywater bioprocessor. Syst. Appl. Microbiol. 28, 421-429. https://doi.org/10.1016/j.syapm.2005.03.003
  16. Sarioglu, O., Suluyayla, R., and Tekinay, T. 2012. Heterotrophic ammonium removal by a novel hatchery isolate Acinetobacter calcoaceticus STB1. Int. Biodet. Biodeg. 71, 67-71. https://doi.org/10.1016/j.ibiod.2012.04.012
  17. Sasser, M. 1990. Identification of bacteria by gas chromatography of cellular fatty acids. Technical Note 101. MIDI., Newark, Del, USA.
  18. Schroll, G., Busse, H., Busse, H., Parrer, G., Rolleke, S., Lubitz, W., and Denner, E. 2001. Alcaligenes faecalis subsp. parafaecalis subsp. nov., a bacterium accumulating poly-${\beta}$-hydroxybutyrate from acetone-butanol bioprocess residues. Syst. Appl. Microbiol. 24, 37-43. https://doi.org/10.1078/0723-2020-00001
  19. Shi, Z., Zhang, Y., Zhou, J., Chen, M., and Wang, X. 2013. Biological removal of nitrate and ammonium under aerobic atmosphere by Paracoccus versutus LYM. Bioresour. Technol. 148, 144-148. https://doi.org/10.1016/j.biortech.2013.08.052
  20. Van Loosdrecht, M. and Jetten, M. 1998. Microbiological conversions in nitrogen removal. Water Sci. Technol. 38, 1-7.
  21. Van Trappen, S., Tan, T., Samyn, E., and Vandamme, P. 2005. Alcaligenes aquatilis sp. nov., a novel bacterium from sediments of the Weser Estuary, Germany, and a salt marsh on Shem Creek in Charleston Harbor, USA. Int. J. Syst. Evol. Microbiol. 55, 2571-2575. https://doi.org/10.1099/ijs.0.63849-0
  22. Won, S., Cho, W., Lee, J., Park, K., and Ra, C. 2014. Data build-up for the construction of Korean specific greenhouse gas emission inventory in livestock categories. Asian-Australas. J. Anim. Sci. 27, 439-446.
  23. Yang, X., Wang, S., Zhang, D., and Zhou, L. 2011. Isolation and nitrogen removal characteristics of an aerobic heterotrophic nitrifying-denitrifying bacterium, Bacillus subtilis A1. Bioresour. Technol. 102, 854-862. https://doi.org/10.1016/j.biortech.2010.09.007
  24. Yokoyama, S., Adachi, Y., Asakura, S., and Kohyama, E. 2012. Characterization of Alcaligenes faecalis strain AD15 indicating biocontrol activity against plant pathogens. J. Gen. Appl. Microbiol. 59, 89-95.
  25. Yoshida, T. and Alexander, M. 1970. Nitrous oxide formation by Nitrosomonas europea and heterotrophic micro-organisms. Proc. Soil Sci. Soc. Am. 34, 880-882. https://doi.org/10.2136/sssaj1970.03615995003400060020x
  26. Zhang, Q., Liu, Y., Ai, G., Miao, L., Zheng, H., and Liu, Z. 2012. The characteristics of a novel heterotrophic nitrification-aerobic denitrification bacterium, Bacillus methylotrophicus strain L7. Bioresour. Technol. 108, 35-44. https://doi.org/10.1016/j.biortech.2011.12.139
  27. Zhang, J., Wu, P., Hao, B., and Yu, Z. 2011. Heterotrophic nitrification and aerobic denitrification by the bacterium Pseudomonas stutzeri YZN-001. Bioresour. Technol. 102, 9866-9869. https://doi.org/10.1016/j.biortech.2011.07.118
  28. Zhao, B., An, Q., He, Y., and Guo, J. 2012. $N_2O$ and $N_2$ production during heterotrophic nitrification by Alcaligenes faecalis strain NR. Bioresour. Technol. 116, 379-385. https://doi.org/10.1016/j.biortech.2012.03.113

Cited by

  1. Electrochemically enhanced microbial CO conversion to volatile fatty acids using neutral red as an electron mediator vol.191, 2018, https://doi.org/10.1016/j.chemosphere.2017.10.004
  2. 대왕범바리(Epinephelus fuscoguttatus ♀×E. lanceolatus ♂)의 아질산 급성노출에 따른 내성한계: 혈액성상 및 혈장성분의 변화 vol.38, pp.1, 2020, https://doi.org/10.11626/kjeb.2020.38.1.093