DOI QR코드

DOI QR Code

Selection and Identification of Phytohormones and Antifungal Substances Simultaneously Producing Plant Growth Promoting Rhizobacteria from Microbial Agent Treated Red-pepper Fields

미생물제제시용 고추경작지로부터 식물생장홀몬과 항진균물질을 동시에 생산하는 식물생장촉진근권세균의 선발 및 동정

  • Jung, Byung-Kwon (Department of Applied Microbiology and Biotechnology, School of Biotechnology, Yeungnam University) ;
  • Lim, Jong-Hui (Department of Applied Microbiology and Biotechnology, School of Biotechnology, Yeungnam University) ;
  • An, Chang-Hwan (Department of Applied Microbiology and Biotechnology, School of Biotechnology, Yeungnam University) ;
  • Kim, Yo-Hwan (Department of Applied Microbiology and Biotechnology, School of Biotechnology, Yeungnam University) ;
  • Kim, Sang-Dal (Department of Applied Microbiology and Biotechnology, School of Biotechnology, Yeungnam University)
  • 정병권 (영남대학교 미생물생명공학과) ;
  • 임종희 (영남대학교 미생물생명공학과) ;
  • 안창환 (영남대학교 미생물생명공학과) ;
  • 김요환 (영남대학교 미생물생명공학과) ;
  • 김상달 (영남대학교 미생물생명공학과)
  • Received : 2012.07.03
  • Accepted : 2012.09.06
  • Published : 2012.09.28

Abstract

In this study, a total of more than 1,000 bacteria, including 739 species of aerobic bacteria, 80 species of urease producing bacteria and 303 species of photosynthetic bacteria, were isolated from red-pepper field soils located in the Gyeongsan Province of the Republic of Korea. Amongst these, 158 species of aerobic bacteria, 70 species of urease producing bacteria and 228 species of photosynthetic bacteria were found to be auxin producing soil bacteria through quantification analysis with the Salkowski test. The latter groupings were then tested for antifungal activities to ${\beta}$-Glucanase and siderophore using CMC congo red agar and CAS blue agar media. In addition, the selected strains were examined for antifungal activity against various phytopathogenic fungi on PDN agar media. Six strains; BCB14, BCB17, C10, HA46, HA143, and HJ5, were noted for their ability to both produce auxin and act as antifungal substances. 16S rDNA sequence comparison analyses of these six strains identified them as Bacillus subtilis BCB14, B. methylotrophicus BCB17, B. methylotrophicus C10, B. sonorensis HA46, B. subtilis HA143, and B. safensis HJ5.

식물생장 촉진 홀몬 auxin을 생산하는 균주를 선발하기 위해 경북 경산시 소재 고추경작지 근권토양으로 부터 739종의 일반호기성 균주와 urease 생산 균주 80종 및 광합성 균주 303종과 같이 총 1000여종 이상의 균주를 분리하였다. 이 균주들을 대상으로 Salkowski test를 실시한 결과, auxin을 생산하는 158종의 일반호기성 균주와 70종의 urease 생산 균주 및 228종의 광합성 균주를 선발할 수 있었으며, Holbrook test를 통해 또 다른 식물생장 촉진 호르몬인 gibberellin도 대부분의 균주에서 생산되는 것을 확인할 수 있었다. 선발된 균주 중 항진균 물질인 ${\beta}$-Glucanase와 siderophore를 생산하고 다양한 병원성 진균에 대해 길항 범위를 가지는 6가지 균주 BCB14, BCB17, C10, HA46, HA143, HJ5를 toothpicking 및 대치배양을 통해 최종 선발할 수 있었으며, 분류학적으로 동정한 결과 6종 모두 B. subtilis BCB14, B. methylotrophicus BCB17, B. methylotrophicus C10, B. sonorensis HA46, B. subtilis HA143, B. safensis HJ5로 확인되었다.

Keywords

References

  1. Amara, M. A. T. and M. S. A. Dahdoh. 1997. Effect of inoculation with plant growth promoting rhizobacteria (PGPR) on yield and uptake of nutrients by wheat grown on sandy soil. Egyptian J. Soil Science 37: 467-484.
  2. Ates, S., S. Ozenir, and M. Gokdere. 2006. Effect of silicone oil on gibberellic acid production by Gibberella fujikuroi and Aspergillus niger. Appl. Biochem. Microbiol. 42: 500-501. https://doi.org/10.1134/S0003683806050097
  3. Barthe, P., V. Pujade-Renaud, F. Breton, D. Gargani, R. Thai, and C. Roumestand. 2007. Structural analysis of cassiicolin, a host-selective protein toxin from Corynespora cassiicola. J. Mol. Biol. 367: 89-101. https://doi.org/10.1016/j.jmb.2006.11.086
  4. Bomke, C. and B. Tudzynski. 2009. Diversity, regulation, and evolution of the gibberellin biosynthetic pathway in fungi compared to plants and bacteria. Phytochemistry 70: 1876-1893. https://doi.org/10.1016/j.phytochem.2009.05.020
  5. Chen, W., H. A. J. Hoitink, A. F. Schmitthenner, and O. H. Tuovinen. 1988. The role of microbial activity in suppression of daming-off caused by Pythium ultimum. Phytopathology 78: 314-322. https://doi.org/10.1094/Phyto-78-314
  6. Chen, Y., R. Mei, S. Lu, L. Liu, and J. W. Kloepper. 1994. The use of yield increasing bacteria (YIB) as plant growth-promoting rhizobacteria in chinese agriculture, Utkhede, R. S. and V. K. Gupta (ed), Management of Soil Borne Diseases, Kalyani Publishers, New Delhi, pp. 165-184.
  7. Choi, J. G., Y. S. Kim, W. T. Lee, and S. D. Kim. 1997. Urease gene transfer of antagonistic bacillus subtilis YB-70 and increased antagonistic effect. Kor. J. Microbiol. Biotechnol., 25: 30-36.
  8. Chun, J. S., J. H. Lee, Y. Y. Jung, M. J. Kim, S. Kim, B. K. Kim, and Y. W. Lim. 2007. EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int. J. Syst. Evol. Microbiol. 57: 2259-2261. https://doi.org/10.1099/ijs.0.64915-0
  9. Esitken, A., S. Ercisli, H. Karlidag, and F. Sahin. 2005. Potential use of plant growth promoting rhizobacteria (PGPR) in organic apricot production. Proc. Int. Sci. Conf. Environmentally Friendly Fruit Growing Tartu-Estonia, September 7-9, pp. 90-97.
  10. Imhoff, J. F., and H. G. Truper. 1989. Purple nonsulfur bacteria. pp. 1658-1662. In J. T. Staley et al. (ed.) Bergey's manual of systematic bacteriology. Vol. 3. Williams and Wilkins, Baltimore.
  11. Ishimaru, C. A. and J. E. Loper. 1992. High-affinity iron uptake systems present in Erwinia carotovora subsp. carotovora include the hydroxamate siderophore aerobactin. J. bacteriol. 174: 2993-3003.
  12. Jung, H. K., J. R. Kim, S. M. Woo, and S. D. Kim. 2006. An auxin producing plant growth promoting rhizobacterium Bacillus subtilis AH18 which has siderophore-producing biocontol activity. J. Kor. Soc. Appl. Biol. Chem. 7: 94-100.
  13. Jung, H. K., J. R. Kim, S. M. Woo, and S. D. Kim. 2007. Selection of the auxin, siderophore and cellulase- producing PGPR, Bacillus licheniformis K11 and its plant growth promoting mechanisms. J. Kor. Soc. Appl. Biol. Chem. 50: 23-28.
  14. Khalid, A., M. Arshad, and Z. A. Zahir. 2004. Screening plant growth-promoting rhizobacteria for improving growth and yield of wheat. J. Appl. Microbiol. 96: 473-480. https://doi.org/10.1046/j.1365-2672.2003.02161.x
  15. Kim, B. S., J. W. A, and K. Y. Cho. 1998. Isolation and identification of Myxobacteria KR025 and searching of their bioactive compounds. Kor. J. Plant Pathol. 14: 345-349.
  16. Kim, J. W., B. K. Jung, C. H. An, J. H. Lim, and S. D. Kim. 2011. Isolation of cellulase-producing plant growth promoting rhizobacteria in pepper farming soil. Yeungnam University.
  17. Kistler, H. C. and U. K. Benny. 1988. Genetic transformation of the fungal plant wilt pathogen, Fusarium oxysporum. Curr. Genet. 13: 145-149. https://doi.org/10.1007/BF00365649
  18. Kousik, C. S., J. P. Snow, and R. A. Valverde. 1993. Comparison of double-stranded RNA components and virulence among isolates of Rhizoctonia solani AG-1 IA and AG-1 IB. Phytopathology 84: 44-49.
  19. Lee, J. M., H. S. Lim, T. H. Chang, and S. D. Kim. 1999. Isolation of siderophore-producing Pseudomonas fluorescens GL7 and its biocontrol activity against root-rot disease. Kor. J. Appl. Microbiol. Biotechnol. 27: 427-432.
  20. Lee, K. E., B. K. Jung, C. H. An, J. H. Lim, and S. D. Kim. 2011. Isolation and identification of siderophore-producing bacteria that has antifungal activity. Yeungnam University.
  21. Gutierrez-Manero, F. J., B. Ramos-Solano, A. Probanza, J. Mehouachi, F. R. Tadeo, and M. Talon. 2001. The plant growth promoting rhizobacteria Bacillus pumilus and Bacillus licheniformis produce high amounts of physiologically active gibberellins. Physiol. Plant. 111: 206-211. https://doi.org/10.1034/j.1399-3054.2001.1110211.x
  22. Loon, L. C. van. 2007. Plant responses to plant growthpromoting rhizobacteria. Eur. J. Plant Pathol. 119: 243-254. https://doi.org/10.1007/s10658-007-9165-1
  23. Lumsden, R. D. 1981. In The Fungal Community: Ecology of mycoparasitism. D. T. Carroll (ed.), Marcel Dekker Inc, N. Y. pp. 295-328.
  24. Moon, S. W., M. Matsuyama, G. M. Go, Y. D. Lee, and Y. B. Go. 1997. N2 fixation and $H_2$ production by a phototrophic bacterium, Chromatium sp. Kor. J. Aquaculture 10: 69-76.
  25. Shon, H. J., B. K. Jung, Y. H. Kim, J. H. Lim, and S. D. Kim. 2011. Isolation and identification of auxin and gibberellin producing photosynthetic bacteria in pepper farming. Yeungnam University.
  26. Tamura, K., J. Dudley, M. Nei, and Sudhir Kumar. 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) Software Version 4.0. Mol. Biol. Evol. 24: 1596-1599. https://doi.org/10.1093/molbev/msm092
  27. Teather, R. and P. J. Wood. 1982. Use of congo red-polysaccharide interations in enumeration and characterization of cellulolytic bacteria from the bovine rumen. Appl. Environ. Microbiol. 43: 777-780.
  28. Thomas, O., G. D. Dieter, and H. Dieter. 1991. IAA synthesis in the biocontrol strain CHO of Pseudomonas fluorescens: role of tryptophan side chain oxidase. J. Gen. Microbiol. 137: 2273-2279. https://doi.org/10.1099/00221287-137-10-2273
  29. Xu, J., X. Zhao, X. Han, and Y. Du. 2007. Antifungal activity of oligochitosan against Phytophthora capsici and other plant pathogenic fungi in vitro. Pesticide Biochem. Physiol. 87: 220-228. https://doi.org/10.1016/j.pestbp.2006.07.013

Cited by

  1. 식물 병원성 곰팡이에 길항작용을 갖는 다양한 Bacillus sp.의 균주 분리와 특성에 관한 연구 vol.47, pp.4, 2012, https://doi.org/10.4014/mbl.1904.04001
  2. 토양에서 분리한 Pseudomonas geniculata ANG3, Exiguobacterium acetylicum ANG40 및 Burkholderia stabilis ANG51의 식물 생장촉진 활성 및 식물병 방제활성 vol.48, pp.1, 2012, https://doi.org/10.4014/mbl.1906.06002