• Title/Summary/Keyword: quiver

Search Result 21, Processing Time 0.027 seconds

On Semisimple Representations of the Framed g-loop Quiver

  • Choy, Jaeyoo
    • Kyungpook Mathematical Journal
    • /
    • v.57 no.4
    • /
    • pp.601-612
    • /
    • 2017
  • Let Q be the frame g-loop quiver, i.e. a generalized ADHM quiver obtained by replacing the two loops into g loops. The vector space M of representations of Q admits an involution ${\ast}$ if orthogonal and symplectic structures on the representation spaces are endowed. We prove equivalence between semisimplicity of representations of the ${\ast}-invariant$ subspace N of M and the orbit-closedness with respect to the natural adjoint action on N. We also explain this equivalence in terms of King's stability [8] and orthogonal decomposition of representations.

PROJECTIVE PROPERTIES OF REPRESENTATIONS OF A QUIVER Q = • → • AS R[x]-MODULES

  • Park, Sangwon;Kang, Junghee;Han, Juncheol
    • Korean Journal of Mathematics
    • /
    • v.18 no.3
    • /
    • pp.243-252
    • /
    • 2010
  • In this paper we extend the projective properties of representations of a quiver $Q={\bullet}{\rightarrow}{\bullet}$ as left R-modules to the projective properties of representations of quiver $Q={\bullet}{\rightarrow}{\bullet}$ as left $R[x]$-modules. We show that if P is a projective left R-module then $0{\rightarrow}P[x]$ is a projective representation of a quiver $Q={\bullet}{\rightarrow}{\bullet}$ as $R[x]$-modules. And we show $0{\rightarrow}L$ is a projective representation of $Q={\bullet}{\rightarrow}{\bullet}$ as R-module if and only if $0{\rightarrow}L[x]$ is a projective representation of a quiver $Q={\bullet}{\rightarrow}{\bullet}$ as $R[x]$-modules. Then we show if P is a projective left R-module then $R[x]\longrightarrow^{id}P[x]$ is a projective representation of a quiver $Q={\bullet}{\rightarrow}{\bullet}$ as $R[x]$-modules. We also show that if $L\longrightarrow^{id}L$ is a projective representation of $Q={\bullet}{\rightarrow}{\bullet}$ as R-module, then $L[x]\longrightarrow^{id}L[x]$ is a projective representation of a quiver $Q={\bullet}{\rightarrow}{\bullet}$ as $R[x]$-modules.

PROJECTIVE REPRESENTATIONS OF A QUIVER WITH THREE VERTICES AND TWO EDGES AS R[x]-MODULES

  • Han, Juncheol;Park, Sangwon
    • Korean Journal of Mathematics
    • /
    • v.20 no.3
    • /
    • pp.343-352
    • /
    • 2012
  • In this paper we show that the projective properties of representations of a quiver $Q={\bullet}{\rightarrow}{\bullet}{\rightarrow}{\bullet}$ as left $R[x]$-modules. We show that if P is a projective left R-module then $0{\longrightarrow}0{\longrightarrow}P[x]$ is a projective representation of a quiver Q as $R[x]$-modules, but $P[x]{\longrightarrow}0{\longrightarrow}0$ is not a projective representation of a quiver Q as $R[x]$-modules, if $P{\neq}0$. And we show a representation $0{\longrightarrow}P[x]\longrightarrow^{id}P[x]$ of a quiver Q is a projective representation, if P is a projective left R-module, but $P[x]\longrightarrow^{id}P[x]{\longrightarrow}0$ is not a projective representation of a quiver Q as $R[x]$-modules, if $P{\neq}0$. Then we show a representation $P[x]\longrightarrow^{id}P[x]\longrightarrow^{id}P[x]$ of a quiver Q is a projective representation, if P is a projective left R-module.

SHEAF-THEORETIC APPROACH TO THE CONVOLUTION ALGEBRAS ON QUIVER VARIETIES

  • Kwon, Namhee
    • Honam Mathematical Journal
    • /
    • v.35 no.1
    • /
    • pp.1-15
    • /
    • 2013
  • In this paper, we study a sheaf-theoretic analysis of the convolution algebra on quiver varieties. As by-products, we reinterpret the results of H. Nakajima. We also produce a refined form of the BBD decomposition theorem for quiver varieties. Finally, we study a construction of highest weight modules through constructible functions.

PROJECTIVE AND INJECTIVE PROPERTIES OF REPRESENTATIONS OF A QUIVER Q = • → • → •

  • Park, Sangwon;Han, Juncheol
    • Korean Journal of Mathematics
    • /
    • v.17 no.3
    • /
    • pp.271-281
    • /
    • 2009
  • We define injective and projective representations of a quiver $Q={\bullet}{\rightarrow}{\bullet}{\rightarrow}{\bullet}$. Then we show that a representation $M_1\longrightarrow[50]^{f1}M_2\longrightarrow[50]^{f2}M_3$ of a quiver $Q={\bullet}{\rightarrow}{\bullet}{\rightarrow}{\bullet}$ is projective if and only if each $M_1,\;M_2,\;M_3$ is projective left R-module and $f_1(M_1)$ is a summand of $M_2$ and $f_2(M_2)$ is a summand of $M_3$. And we show that a representation $M_1\longrightarrow[50]^{f1}M_2\longrightarrow[50]^{f2}M_3$ of a quiver $Q={\bullet}{\rightarrow}{\bullet}{\rightarrow}{\bullet}$ is injective if and only if each $M_1,\;M_2,\;M_3$ is injective left R-module and $ker(f_1)$ is a summand of $M_1$ and $ker(f_2)$ is a summand of $M_2$.

  • PDF

INJECTIVE REPRESENTATIONS OF QUIVERS

  • Park, Sang-Won;Shin, De-Ra
    • Communications of the Korean Mathematical Society
    • /
    • v.21 no.1
    • /
    • pp.37-43
    • /
    • 2006
  • We prove that $M_1\longrightarrow^f\;M_2$ is an injective representation of a quiver $Q={\bullet}{\rightarrow}{\bullet}$ if and only if $M_1\;and\;M_2$ are injective left R-modules, $M_1\longrightarrow^f\;M_2$ is isomorphic to a direct sum of representation of the types $E_l{\rightarrow}0$ and $M_1\longrightarrow^{id}\;M_2$ where $E_l\;and\;E_2$ are injective left R-modules. Then, we generalize the result so that a representation$M_1\longrightarrow^{f_1}\;M_2\; \longrightarrow^{f_2}\;\cdots\;\longrightarrow^{f_{n-1}}\;M_n$ of a quiver $Q={\bullet}{\rightarrow}{\bullet}{\rightarrow}{\cdots}{\rightarrow}{\bullet}$ is an injective representation if and only if each $M_i$ is an injective left R-module and the representation is a direct sum of injective representations.

A Study of the Making of Ornamental Metal Quiver Fittings in the Ancient Tombs of Jeongchon, Bogamri, Naju (나주 복암리 정촌 고분 출토 화살통 장식의 제작 방법 연구)

  • Lee, Hyeyoun
    • Korean Journal of Heritage: History & Science
    • /
    • v.53 no.2
    • /
    • pp.242-253
    • /
    • 2020
  • Six ornamental metal quiver fittings were excavated from stone chamber No.1 of the ancient tombs of Jeongchon, Bokam-ri, Naju. The ornamental quiver fittings are metal, but the body of the quiver was made of organic material, so that it corroded and disappeared in the burial environment. The ornamental metal quiver fittings were made in pairs, and decorated one quiver according to the location they were found in and their forms. The ornamental metal quiver fitting can be divided into two types: A band style ornament (帶輪狀金具) which decorates the arrow pouch, and a board style ornament (板狀金具) which decorates the board connecting the waist belt. Two ornamental metal quiver fittings excavated from wooden coffin 2 of stone chamber No.1, were made in the band style, while the ornamental metal quiver fittings from southeast of stone chamber No.1 were identified as two boardstyle ornaments and two band-style ornaments for what was presumed to be belt loops. Material analysis of the ornamental metal quiver fittings shows that they are made of a gilt bronze plate attached to an iron plate, and the surface is marked with a speck of chisel to make lines and patterns. Chemical composition analysis (XRF) established that 24~40wt% Au and 50~93wt% Cu were detected on the gold surface, and it was confirmed that bronze corrosion had taken place on the gilt surface. SEM-EDS analysis of the gold plating layer identified a working line for glossing, and 7~9wt% Hg and an amalgam of gilt layers was detected, confirming the amalgam gilding. CT and FT-IR analysis established that the band style was double-layered with silk fabric under the iron plate, and there was also a lacquer piece underneath. The band-style ornaments have two layers of silk under the iron plate, along with lacquer pieces. Adding the fabric to the arrow pouch increases adhesion and decorative value. It is assumed that the lacquer pieces indicate that the surface of the lacquered arrow pouch had fallen together with the ornaments. On the other hand, the board-style ornaments have a thick layer of organic matter under the iron plate, but this is difficult to identify and appears to be a remnant of the quiver board. The characteristics of these ornamental metal quiver fittings were similar in Baekje, Silla, and Gaya cultures from the late 4th to the late 5th centuries, and enable us to identify the art of ancient gold craftwork at that time.

GENERALIZED MCKAY QUIVERS, ROOT SYSTEM AND KAC-MOODY ALGEBRAS

  • Hou, Bo;Yang, Shilin
    • Journal of the Korean Mathematical Society
    • /
    • v.52 no.2
    • /
    • pp.239-268
    • /
    • 2015
  • Let Q be a finite quiver and $G{\subseteq}Aut(\mathbb{k}Q)$ a finite abelian group. Assume that $\hat{Q}$ and ${\Gamma}$ are the generalized Mckay quiver and the valued graph corresponding to (Q, G) respectively. In this paper we discuss the relationship between indecomposable $\hat{Q}$-representations and the root system of Kac-Moody algebra $g({\Gamma})$. Moreover, we may lift G to $\bar{G}{\subseteq}Aut(g(\hat{Q}))$ such that $g({\Gamma})$ embeds into the fixed point algebra $g(\hat{Q})^{\bar{G}}$ and $g(\hat{Q})^{\bar{G}}$ as a $g({\Gamma})$-module is integrable.

PURE INJECTIVE REPRESENTATIONS OF QUIVERS

  • Hosseini, Esmaeil
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.2
    • /
    • pp.389-398
    • /
    • 2013
  • Let R be a ring and $\mathcal{Q}$ be a quiver. In this paper we give another definition of purity in the category of quiver representations. Under such definition we prove that the class of all pure injective representations of $\mathcal{Q}$ by R-modules is preenveloping. In case $\mathcal{Q}$ is a left rooted semi-co-barren quiver and R is left Noetherian, we show that every cotorsion flat representation of $\mathcal{Q}$ is pure injective. If, furthermore, R is $n$-perfect and $\mathcal{F}$ is a flat representation $\mathcal{Q}$, then the pure injective dimension of $\mathcal{F}$ is at most $n$.