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GENERALIZED MCKAY QUIVERS, ROOT SYSTEM AND

KAC-MOODY ALGEBRAS

Bo Hou and Shilin Yang

Abstract. Let Q be a finite quiver and G ⊆ Aut(kQ) a finite abelian

group. Assume that Q̂ and Γ are the generalized Mckay quiver and the
valued graph corresponding to (Q,G) respectively. In this paper we dis-

cuss the relationship between indecomposable Q̂-representations and the
root system of Kac-Moody algebra g(Γ). Moreover, we may lift G to

G ⊆ Aut(g(Q̂)) such that g(Γ) embeds into the fixed point algebra g(Q̂)G

and g(Q̂)G as a g(Γ)-module is integrable.

1. Introduction

Thirty years ago, McKay introduced a class of quivers, now called the McKay
quivers, for some finite subgroups of the general linear group [16]. Let C denote
the complex number field. McKay observed that the McKay quivers for the
subgroups of SL(2,C) are the double quivers of the extended Dynkin quivers

Ãn, D̃n, Ẽ6, Ẽ7, Ẽ8. McKay quiver has played an important role in many
mathematical fields such as quantum group, algebraic geometry, mathematics
physics and representation theory (see, for examples [2, 4, 8, 9, 15, 17]).

Let V be a finite vector space over an algebraically closed field k of charac-
teristic 0 and G ⊆ GL

k

(V ) a finite group. Assume that T
k

(V ) is the tensor
algebra of V over k. It is well-known that the skew group algebra T

k

(V ) ∗G

is Morita equivalent to the path algebra kQ̂, where Q̂ is the McKay quiver of
G (see [9]). In other words, the McKay quiver realizes the Gabriel quiver of
T
k

(V ) ∗ G. It is natural to ask how to determine the Gabriel quiver of skew
group algebra Λ∗G for any algebra Λ. Recently, for arbitrary path algebra kQ
over an algebraically closed field k and a finite group G such that chark ∤ |G|, if
the action of G on kQ permutes the set of primitive idempotents and stabiliz-
ing the vector space spanned by the arrows, Demonet in [5] has constructed a
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quiver Q̂ such that the path algebra kQ̂ is Morita equivalent to the skew group

algebra kQ ∗ G. The quiver Q̂ can be viewed as a generalization of McKay
quiver, which is called the generalized McKay quiver of (Q,G) in this paper.

Given a finite quiver Q with an admissible automorphism a. Hubery in
[11, 12] described the correspondence between dimension vectors of the iso-
morphically invariant Q-indecomposables and the positive root system of g(Γ),
where Γ is the valued graph of (Q, a). Deng, Du, et al. proved that the similar
correspondence between representations of the species of (Q, a) over finite field
and the positive root system of g(Γ) by Frobenius morphism [6]. Motivated
by Hubery’s work, the aim of this paper is to establish the correspondence

between the indecomposable Q̂-representations and the positive roots of the
symmetrizable Kac-Moody algebra g(Γ) of the valued graph Γ associated to
(Q,G), where Q is a finite quiver and G is a finite abelian automorphism group
of kQ. Moreover, we can lift G to an automorphism group G of Kac-Moody

algebra g := g(Q̂) of Q̂, such that g(Γ) can be embedded into the fixed point

subalgebra gG. In this case, we also show that gG as a g(Γ)-module is inte-
grable. Compared with Hubery’s work, a more general description is given by
approach of the generalized McKay quiver.

For a finite quiver Q = (I, E) and a finite abelian group G ⊆ Aut(kQ) (the
algebra automorphism group of kQ). We always assume that the action of G
on Q is admissible, i.e., no arrow connects vertices in the same G-orbit. Then
we can get a valued graph Γ without loops and a generalized McKay quiver

Q̂ corresponding to (Q,G). By [18], we can define an action of G on kQ̂ due

to the Morita equivalence between the skew group algebra kQ ∗ G and kQ̂.

Therefore this action induces an action on Q̂-representations. Let GX be a
complete set of left coset representatives of HX = {g ∈ G | gX ∼= X} in G for

any Q̂-representation X , let ZI, ZÎ and ZI be the root lattice of Q, Q̂ and Γ,

respectively. Applying the equivalence between representation category of Q̂
and module category of the skew group algebra kQ ∗G and the fact that each
kQ ∗G module as a Q-representation is G-invariant, we define a map

h : ZÎ −→ (ZI)G −→ ZI

where (ZI)G is the fixed point set of ZI under the action ofG. The map h builds

a bridge between the dimension vectors of indecomposable Q̂-representations
and the root system of Kac-Moody algebra g(Γ). The first main result of this
paper is described as follows.

Theorem 1.1. Let Q be a quiver without loops and with an admissible action

of a finite abelian subgroup G ⊆ Aut(kQ), and k be an algebraically closed field

with chark ∤ |G|. Assume that Γ and Q̂ are the valued graph and generalized

McKay quiver associated to (Q,G), respectively. Then

(1) the images under h of the dimension vectors of all the indecomposable

Q̂-representations give the positive root system of the Kac-Moody algebra g(Γ);
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(2) for each positive real root α of g(Γ), let X be a Q̂-representation such

that h(dimX) = α. Then there are |GX | indecomposable Q̂-representations

(up to isomorphism) such that their dimension vectors under h are α.

The proof of this theorem is based on understanding the relationship among

indecomposable Q̂-representations, indecomposable kQ ∗G-modules and inde-
composable G-invariant Q-representations. In the proof, we also need the dual

between (Q,G) and (Q̂, G). This duality is first discussed in [18] for a finite
quiver with an automorphism. Here we give a general and strict proof by the
generalized McKay quiver.

Next we consider the relationship between Kac-Moody algebra g(Γ) and the

fixed point subalgebra gG whenever chark = 0. The action of G on Q̂ naturally
induces an action on the derived algebra g′ of g. Let Ω = {g1, g2, . . . , gn}
be a set of generators of G. Following from [14], we lift G to G ⊆ Aut(g)
corresponding to a family of linear maps {ψi := ψgi : h/h

′ → c | gi ∈ Ω}, where
c is the center of g, h and h′ are the Cartan subalgebra of g and g′ respectively.
Denote by C the symmetrisable generalized Cartan matrix of the valued graph

Γ. Then, we can give a realization (HG, {ǫi}, {hi}) of C by the fixed point set

hG of h, and we obtain that:

Theorem 1.2. For the lifting G of G corresponding to {ψi : h/h
′ → c | gi ∈ Ω}

such that ψi

(
(H + h′)/h′

)
= 0, there is a monomorphism

g(Γ) → gG.

Moreover this monomorphism endows gG with an integrable g(Γ)-module struc-

ture under the adjoint action of g(Γ). In particular, if Q is a finite union of

Dynkin quivers, then g(Γ) ∼= gG as Lie algebras.

In the end of this paper, two examples are given to elucidate our results.
Throughout this paper, let k denote an algebraic closed field and Z denote

the set of integers. We denote by G the finite group such that chark ∤ |G|,
denote by mod-Λ the category of (left) Λ-modules for any k-algebra Λ.

2. Preliminaries

2.1. Recall that a quiver Q = (I, E) is an oriented graph with I the set of
vertices and E the set of arrows. A quiver Q is said to be finite if I and E are
all finite set. An arrow in Q is called a loop if its staring vertex coincides with
its terminating vertex. In this paper we only consider a finite quiver without
loops. Therefore we have a path algebra kQ for a quiver Q (see [1, 3]).

A representation X = (Xi, Xα) of the quiver Q = (I, E) consists of a family
of k-vector spaces Xi for i ∈ I, together with a family of k-linear maps Xα :
Xi → Xj for α : i → j in E. Given two representations X and Y of Q, a
morphism ϕ : X → Y is given by a family of k-linear maps ϕi : Xi → Yi (i ∈ I)
such that ϕj ◦ Xα = Yα ◦ ϕi for each arrow α : i → j. It is well-known that
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the category of representations of Q is naturally equivalent to the category
of kQ-modules (see [1, 3]). Thus we always identify a kQ-module X with a
Q-representation (Xi, Xα) in this paper.

2.2. Assume that Λ is a k-algebra and G acts on Λ, the skew group algebra
of Λ under the action of G is by definition the k-algebra whose underlying
k-vector space is Λ⊗

k

k[G] and whose multiplication is defined by

(λ⊗ g)(λ′ ⊗ g′) = λg(λ′)⊗ gg′

for all λ, λ′ ∈ Λ and g, g′ ∈ G (see [18]). For convenience, we denote this
algebra by Λ ∗ G, denote the element λ ⊗ g in Λ ∗G by λg. Note that Λ and
k[G] can be viewed as subalgebras of Λ ∗G.

Let Λ = kQ be the path algebra for a quiver Q = (I, E). Assume that
the cation of G on kQ permutes the set of primitive idempotents {ei | i ∈ I}
and stabilizes the vector space spanned by the arrows. Let I denote a set of
representatives of the orbits of I under the action of G. For any i ∈ I, let Gi

denote the subgroup of G stabilizing ei. For each i ∈ I, there exist some g ∈ G
such that g−1(i) ∈ I. We fix such a g and denote it by κi. Let Oi be the orbit
of i under the action of G. For (i, j) ∈ I2, G acts on Oi ×Oj by the diagonal
action. A set of representatives of the orbits of this action will be denoted by
Fij .

For i, j ∈ I, we denote by Eij ⊆ kQ the vector space spanned by the arrows
from i to j and regard it as a left and right k[Gij ] := k[Gi ∩ Gj ]-module by

restricting the action of G. In [5] Demonet defined the quiver Q̂ = (Î , Ê) as
follows

Î =
⋃

i∈I

{i} × irrGi,

where irrGi is a set of representatives of isomorphism classes of irreducible

representations of Gi. The set of arrows of Q̂ from (i, ρ) to (j, σ) is a basis of
⊕

(i′,j′)∈Fij

Hom
k[Gi′j′ ]

(
(ρ · κi′)|Gi′j′

, (σ · κj′ )|Gi′j′
⊗
k

Ei′j′

)
,

where the representation ρ · κi′ of Gi′ is the same as ρ as a k-vector space,
and (ρ · κi′)g = ρκi′gκ

−1
i′ for each g ∈ Gi′ = κ−1

i′ Giκi′ . Demonet yielded the
following theorem.

Theorem 2.1 (see [5]). The category mod-kQ̂ is equivalent to the category

mod-kQ ∗G.

In particular, if the quiver Q is a single vertex with m loops, we can view G

as a subgroup of GLm(k). Then the quiver Q̂ is just the McKay quiver of G.

Thus, we view Q̂ as a generalization of McKay quiver in general. Furthermore,
for any factor algebra kQ/J , the shew group algebra (kQ/J) ∗ G is Morita

equivalent to a factor algebra of kQ̂. This implies that the generalized McKay
quiver can realize the Garbiel quiver of Λ ∗G for any basic algebra Λ.
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2.3. For a quiver Q = (I, E), there is a corresponding symmetric generalized
Cartan matrix A = (aij) indexed by I with entries

aij =

{
2, i = j;
−|{edges between vertices i and j}|, i 6= j.

It is obvious that A is independent of the orientation of Q.
Denote by g(Q) the associated symmetric Kac-Moody algebra corresponding

to A with the simple root set Π = {εi | i ∈ I} and root system ∆Q. The root
lattice ZI of Q is the free abelian group on Π, with the partially order such
that α =

∑
i∈I αiεi ≥ 0 if and only if αi ≥ 0 for all i ∈ I. We endow ZI with

a symmetric bilinear form (−,−)Q via (εi, εj)Q = aij . Then, for each vertex
i ∈ I, we have a reflection ri : α 7→ α − (α, εi)Qεi. These reflections generate
the Weyl group W(Q) of Q. The real roots of Q are given by the images under
W(Q) of the simple roots εi and the imaginary roots are given by ± the images
under W(Q) of the fundamental set

FQ := {α > 0 | (α, εi)Q ≤ 0 for all i and the support of α is connected}.

Suppose that the action of G on path algebra kQ permutes the set of primi-
tive idempotents. The action of G is said to be admissible if no arrow connects
to vertices in the same G-orbit. For any quiver Q with an admissible action of
G, we can construct a symmetric matrix B = (bij) indexed by I, where

bij =

{
2|Oi|, i = j;
−|{edges between vertices in Oi and Oj}|, i 6= j.

Let di := bii/2 = |Oi| and D = diag(di). Then C = (cij) = D−1B is a
symmetrisable generalized Cartan matrix indexed by I. It is well-known that
there is a unique valued graph Γ corresponding to the matrix C by [7]. The
valued graph Γ has the vertex set I and an edge i—j equipped with the ordered
pair (|cji|, |cij |) whenever cij 6= 0. Since the action of G is admissible, Γ has
no loops. For each connected component Γ′ of the graph Γ, we always take
the representative set I such that the underlying graph of the full subquiver
generated by the vertices in Γ′ is connected.

Denote by g(Γ) for the associated symmetric Kac-Moody algebra corre-
sponding to C. The simple root set and root system of Γ are denoted by
ΠΓ = {εi | i ∈ I} and ∆Γ. Let ZI denote the root lattice of Γ. There is a sym-
metric bilinear form (−,−)Γ determined by B on ZI such that (εi, εj)Γ = bij ,
and a reflection γi on ZI defined by

γi : α 7→ α−
1

di
(α, εi)Γεi

for each i ∈ I. These reflections generate the Weyl group W(Γ) of Γ. Similarly,
we have the real roots and the imaginary roots associated to Γ (see [13]).
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3. Proof of Theorem 1.1

From now on, unless otherwise stated we fix a finite group G ⊆ Aut(kQ)

and assume that the action of G is admissible. Let Q̂ and Γ be the generalized
Mckay quiver and the valued graph corresponding to (Q,G). In this section,
we show that the correspondence between indecomposable representations of

Q̂ and the positive root system of Γ.

3.1. The group G acts naturally on the root lattice ZI, i.e., g(εi) = εg(i) for
any g ∈ G. It is easy to check that this action preserves the partial order ≥
and the bilinear form (−,−)Q is G-invariant. Let

(ZI)G := {α ∈ ZI | g(α) = α for any g ∈ G}.

There is a canonical bijection

f : (ZI)G −→ ZI

given by

f
(∑

i∈I

αiεi

)
=
∑

i∈I

αiεi.

The admissibility of the action of G implies that the reflections ri and rj com-
mute whenever i and j lie in the same G-orbit. Therefore the element

Si :=
∏

i′∈Oi

ri′ ∈ W(Q)

is well-defined for any i ∈ I. Note that g ◦ ri = rg(i) ◦ g for any g ∈ G, we
have Si ∈ CG(W(Q)), the set of elements in the Weyl group commuting with
the action of G. By induction on the length of the element in CG(W(Q)), it is
easy to check that CG(W(Q)) is generated by Si, i ∈ I.

Similar to [12, Lemma 3], we have:

Lemma 3.1. For any α, β ∈ (ZI)G, we have

(1) (α, β)Q = (f(α), f(β))Γ.
(2) f(Si(α)) = γi(f(α)) ∈ ZI for i ∈ I.

(3) The map γi 7→ Si induces a group isomorphism W(Γ)
≃
−→ CG(W(Q)).

Proof. (1) Set εi :=
∑

i′∈Oi
εi′ . Then {εi | i ∈ I} is a basis of (ZI)G. Since

(εi, εj)Q =
∑

i′∈Oi
j′∈Oj

ai′j′ = bij = (εi, εj)Γ

for any i, j ∈ I, (1) is obvious.
(2) Since the bilinear form (−,−)Q is G-invariant, we have

Si(α) = α−
∑

i′∈Oi

(α, εi′)Qεi′ = α−
∑

i′∈Oi

1

di

(
α,
∑

j∈Oi

εj
)
Q
εi′ = α−

1

di
(f(α), εi′)Γε

i
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by (1). We obtain that

f(Si(α)) = f(α)−
1

di
(f(α), εi′)Γεi = γi(f(α)).

(3) By the result of (2), it is easy to check that γi and Si satisfy the same
relations. Thus W(Γ) ∼= CG(W(Q)). �

For a given α ∈ ZI, let Hα = {g ∈ G | g(α) = α}. Then Hα is a subgroup
of G. We denote by Gα a complete set of representatives of left cosets of Hα

in G, and let

Σ(α) :=
∑

g∈Gα

g(α).

Obviously, Σ(α) ∈ (ZI)G and we have:

Lemma 3.2. The map α 7→ f(Σ(α)) induces a surjection π : ∆Q → ∆Γ.

Moreover, if f(Σ(α)) is a real root, α has to be real and unique up to G-orbit.

Proof. First, for any ω ∈ CG(W(Q)), we have Hα = Hω(α) since the action
of CG(W(Q)) and the action of G on ZI is commutative. Thus we can take
Gα = Gω(α) for any ω ∈ CG(W(Q)).

We now consider β := ω′(f(Σ(α))) with ω′ ∈ W(Γ). Let ω ∈ CG(W(Q))
be the element corresponding to ω′ under the isomorphism in Lemma 3.1(3).
Then β = f(ω(Σ(α))) = f(Σ(ω(α))) has connected support since the support
of α is connected. It is either positive or negative since Σ preserves the partial
order ≥. Denote by Oβ the orbit of β under the action of W(Γ). Then

• if all elements in Oβ are positive, the element in Oβ with minimal
height lies in FΓ;

• if all elements in Oβ are negative, the element in Oβ with maximal
height lies in −FΓ;

• otherwise, there exists a positive number m and i ∈ I such that mεi ∈
Oβ .

In the last case, we have ω(α) = mεi′ for some ω ∈ W(Q), i′ ∈ Oi. But
ω(α) ∈ ∆Q, we must have m = 1 and so that εi ∈ Oβ . Thus β is a root of Γ
and π : ∆Q → ∆Γ, α 7→ f(Σ(α)) is well-defined.

Now, we prove that the map π is surjective. Here we only need to show that
FΓ lies in the image of π. For any β ∈ FΓ, γ := f−1(β) satisfies

0 ≥ (β, εi)Γ = (γ,Σ(εi′))Q =
∑

g∈Gε
i′

(γ, g(εi′))Q = di(γ, εi′)Q

for any i ∈ I and i′ ∈ Oi. Thus any connected component α of γ lies in FQ

and Σ(α) = γ. By Lemma 3.1(3) we get the proof. �

For any g ∈ G, we have an additive autoequivalence functor

Fg : mod-kQ −→ mod-kQ

M 7→ gM
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where the kQ-module gM is defined by taking the same underlying vector
space as M with the action m · λ = mg−1(λ) for m ∈ M and λ ∈ kQ, and
Fg(ψ) = ψ for any homomorphism ψ : M → N . Let (Mi, Mα)i∈I,α∈E be
the Q-representation corresponding to M . Then the Q-representation gM is
(gXi,

gXα)i∈I,α∈E , where
gXi = Xg−1(i) and gXα =

∑
β ζβXβ if g−1(α) =∑

β ζββ, β ∈ E, ζβ ∈ k.

A kQ-module M is said to be G-invariant if Fg(M) ∼= M for any g ∈ G;
a G-invariant kQ-module M is said to be indecomposable G-invariant if M is
non-zero and M cannot be written as a direct sum of two non-zero G-invariant
kQ-modules. It is known that kQ-module M has a kQ ∗ G-module structure
if and only if M is G-invariant, and the full subcategory of mod-kQ generated
by the G-invariant kQ-module is also a Krull-Schmidt category (see [10]).

For a given kQ-module M , we let HM := {g ∈ G | Fg(M) ∼= M} and GM

be a complete set of left coset representatives of HM in G. Then for each
kQ-module M , we define a G-invariant kQ-module

∑
(M) :=

⊕

g∈GM

gM.

It is easy to see that each G-invariant kQ-module has this form. For each kQ-
module M , we denote the dimension vector of M by the linear combination
dimX :=

∑
i∈I dimXi εi ∈ ZI. It is easy to see that dimFg(M) = g(dimM)

for any g ∈ G and M ∈ mod-kQ.

Proposition 3.3. For any indecomposable G-invariant kQ-moduleM , we have

f(dimM) is a root of Γ. Moreover, for any positive real root β of Γ, there

is a unique (up to isomorphism) indecomposable G-invariant kQ-module M
with 1

2 (dimM,dimM)Q indecomposable summands (as kQ-module) such that

f(dimM) = β.

Proof. Let N be an indecomposable kQ-module and α := dimN . Then∑
(N) is an indecomposable G-invariant kQ-module with dimension vector∑
g∈GN

g(α). We claim that

∑

g∈GN

g(α) = mΣ(α)

for some positive integer m. Indeed, since HN ⊆ Hα, we have |Hα| = m|HN |
and so that |GN | = m|Gα| for some positive integer m. Note that

∑

g∈Gα

g(α) =

∑
g∈G g(α)

|Hα|
and

∑

g∈GN

g(α) =

∑
g∈G g(α)

|HN |
,

we obtain that

dim
∑

(N) =
∑

g∈GN

g(α) = m
∑

g∈Gα

g(α) = mΣ(α).
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In particular, if α is a real root of Q, then HN = Hα and so that we take
GN = Gα in this case. Therefore, f(dim

∑
(N)) ∈ ∆Γ. Note that for every

indecomposable G-invariant kQ-module M , there is an indecomposable kQ-
module N such that M ∼=

∑
(N), we get f(dimM) ∈ ∆Γ.

If β := f(dimM) is a real root with f(dimM) = ω′(εi) for some ω′ ∈
W(Γ) and i ∈ I, then dimM = ω(Σ(εi′)) = Σ(ω(εi′)) for any i′ ∈ Oi,
where ω ∈ CG(W(Q)) corresponding to ω′, by the proof of Lemma 3.2. De-
note by N the unique indecomposable kQ-module with dimN = ω(εi′), then
M =

∑
(N) is the unique indecomposable G-invariant kQ-module satisfying

dimM = ω(Σ(εi′)) and M is independent on the taking of i′ ∈ Oi. Finally,
note that

1

2
(dimM,dimM)Q =

1

2
(Σ(εi′),Σ(εi′ ))Q = di = |Gεi′ | = |GN |,

we are done. �

We suppose now that G is abelian with identity ̟, and let

e :=
∑

i∈I

ei̟ ∈ kQ ∗G,

where ei is the idempotent element of kQ corresponding to vertex i ∈ I. By the
proof of [5, Theorem 1], we know that kQ ∗G is Morita equivalent to ekQ ∗Ge

and ekQ ∗Ge ∼= kQ̂. Thus we view the functor

E : mod-kQ ∗G −→ mod-kQ̂

M 7→ eM

as the equivalence functor between mod-kQ ∗G and mod-kQ̂. Denote by

F := kQ ∗G⊗
kQ − : mod-kQ −→ mod-kQ ∗G,

H := Res|
kQ : mod-kQ ∗G −→ mod-kQ.

Following from [5, Theorem 1.1], (H,F ) and (F,H) are adjoint pairs.

Moreover, for any kQ̂-module X , HE−1(X) is a G-invariant kQ-module
and there is a kQ-module M such that HE−1(X) ∼=

∑
(M), where E−1 is the

quasi-inverse of E. Identifying X with a Q̂-representation (Xiρ, Xα), we have
∑

ρ∈irrGi

Xiρ
∼= eiHE

−1(X)ei ∼=
⊕

g∈GM

(gM)i.

Suppose dimX :=
∑

(iρ)∈Î αiρεiρ, then

∑

ρ∈irrGi

αiρ =
∑

g∈GM

dim(gM)i = f
(
dim

∑
(M)

)
i
.

Therefore, the Moriat equivalence and the restriction functor induce a map

h : ZÎ −→ ZI
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given by h(α)i =
∑

ρ∈irrGi
αiρεi for any α =

∑
(iρ)∈Î αiρεiρ ∈ ZÎ . The restric-

tion of h to the root system ∆Q̂ is also denoted by h. Then h : ∆Q̂ → ∆Γ is

well-defined since X is an indecomposable kQ̂-module if and only if M is an
indecomposable kQ-module. By Proposition 3.3, we have:

Corollary 3.4. For any indecomposable Q̂-representation X, h(dimX) is a

positive root of Γ.

Up to now, we have obtained the map h : ZÎ → ZI and have shown the
half of Theorem 1.1(1). Before completing the proof of Theorem 1.1, we should

define an action of G on kQ̂ and give the dual between (Q,G) and (Q̂, G). In
the following subsection, we first describe the duality of (Q,G).

3.2. We write the abelian group G as the product of finite cyclic groups, i.e.,

G = 〈g1〉 × 〈g2〉 × · · · × 〈gn〉,

where the order of gi is mi for 1 ≤ i ≤ n. Then |G| = m1m2 · · ·mn.

We now define an action of G on Q̂. Since G is abelian, all the characters χ
of G are linear. The set of all the characters of G is an abelian group with the
multiplication

χχ′(g) = χ(g)χ′(g)

for all g ∈ G. We denote this group by G̃. Setting ϕ : G→ G̃ by

ϕ(g) = χg, χg(g
′) = ξt1s11 ξt2s22 · · · ξtnsnn

if g = gt11 g
t2
2 · · · gtnn and g′ = gs11 g

s2
2 · · · gsnn , where ξi is a primitive mi-th root

of unity. It is easy to see that ϕ is a group isomorphism. By [18], we define a
linear action of G on kQ ∗G by setting

g(λh) = χg(h)λh

for all g ∈ G, λh ∈ kQ ∗G. Then G ⊆ Aut(kQ ∗G). By [18, Proposition 5.1],
we have:

Proposition 3.5. The map ψ : (kQ ∗G) ∗G→ End
kQ(kQ ∗G) defined by

ψ(λgh)(µh′) = χh(h
′)λgµh′

is an algebra isomorphism. It follows that (kQ ∗G) ∗G is Morita equivalent to

kQ.

Moreover, note that χg(̟) = 1 for any g ∈ G, where ̟ is the identity of

G. We get g(e) = e. Denote by ϑ : ekQ ∗Ge → kQ̂ the algebra isomorphism,

then for any a ∈ kQ̂, there is a unique b ∈ ekQ ∗ Ge, such that ϑ(b) = a.

Let g(a) = ϑ(g(b)) for any g ∈ G. This induces an action of G on kQ̂ such

that G ⊆ Aut(kQ̂). Therefore, we get a skew group algebra kQ̂ ∗G under this

action. Let
̂̂
Q be the generalized McKay quiver of (Q̂, G). Then, there is a

Morita equivalence between kQ̂ ∗ G and k

̂̂
Q by Theorem 2.1. Therefore, we

have:
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Proposition 3.6. Let Q̂ be the generalized McKay quiver of (Q,G) under the

action of G defined as above. Then the generalized McKay quiver
̂̂
Q of (Q̂, G)

coincides with Q.

Thus we get the dual between (Q,G) and (Q̂, G). Now, for the relationship

between quivers Q and Q̂, and the action of G on Q̂, we give some more
description. Note that the stabilizer Gi of i ∈ I has the form

Gi = 〈g
di1

1 〉 × 〈g
di2

2 〉 × · · · × 〈g
din
n 〉,

where

νij := |〈g
dij

j 〉| =
mj

dij
, 1 ≤ j ≤ n,

and so that

di = |Oi| =
|G|

|Gi|
= di1 × di2 × · · · × din .

We set

e(i,si1 ,si2 ,...,sin )

=
1

|Gi|

νi1−1∑

j1=0

νi2−1∑

j2=0

· · ·

νin−1∑

jn=0

ξ
di1

j1si1
1 ξ

di2
j2si2

2 · · · ξ
din jnsin
n g

di1
j1

1 g
di2

j2
2 · · · g

dinjn
n .

Then one can check that
{
e(i,si1 ,si2 ,...,sin ) | sij ∈ Z/νijZ for all 1 ≤ j ≤ n

}
is

a complete set of primitive orthogonal idempotents of k[Gi].
It is obvious that

gj(e(i,si1 ,si2 ,...,sin )) = e(i,si1 ,...,sij−1
,s′ij

,sij+1
,...,sin )

for any 1 ≤ j ≤ n, where s′ij ∈ Z/νijZ and s′ij ≡ sij +1 mod νij . Since for each

idempotent e(i,si1 ,si2 ,...,sin ), there is a unique corresponding one dimensional
irreducible representation ρ of Gi defined by the group homomorphism φρ :

Gi → k, g
dij

j 7→ ξdij
sij , for 1 ≤ j ≤ n. Thus we can index the vertex set Î by

some sequences (i, si1 , si2 , . . . , sin), i.e.,

Î =
{
(i, si1 , si2 , . . . , sin) | i ∈ I, sij ∈ Z/νijZ for all 1 ≤ j ≤ n

}
.

Then the action of G on Î is clear and so that the orbit of (i, ρ) ∈ Î has the
form

{
(i, si1 , si2 , . . . , sin) | sij ∈ Z/νijZ for 1 ≤ j ≤ n} = {(i, ρ) | ρ ∈ irrGi

}

for some i ∈ I. Furthermore, it is easy to see that if the action of G on kQ is

admissible, then so is on kQ̂.
For any i, j ∈ I, i′ ∈ Oi and j

′ ∈ Oj , we consider the group Gij := Gi∩Gj =

〈gt11 〉 × 〈gt22 〉 × · · · × 〈gtnn 〉, where tl is the least common multiple of dil and djl
for 1 ≤ l ≤ n. Note that the vector space Ei′j′ spanned by arrows α : i′ → j′ in
Q is a k[Gij ]-bimodule, we can find a basis of Ei′j′ such that the action of Gij
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is diagonal. That is, if g = gt11 g
t2
2 · · · gtnn ∈ k[Gij ], then for any basis element

α′ ∈ Ei′j′ ,

g(α′) = ξt1r11 ξt2r22 · · · ξtnrnn α′

for some r1, r2, . . . , rn ∈ Z. Since Gij is abelian, the number of the basis
elements of Ei′j′ is just the number of arrows from i′ to j′ in Q. Moreover, it
is easy to see that the t1t2 · · · tn elements

α′, g1(α
′), . . . , gn(α

′), g21(α
′), g1g2(α

′), . . . , gt1−1
1 gt2−1

2 · · · gtn−1
n (α′)

are linearly independent. That is, for any arrow α : i′ → j′ in Q, there are
t1t2 · · · tn arrows in its orbit.

On the other hand, we can calculate that

e(j,sj1 ,sj2 ,...,sjn )α
′e(i,si1 ,si2 ,...,sin )

=
didj
|G|2

νi1−1∑

p1=0

· · ·

νin−1∑

pn=0

νj1−1∑

q1=0

· · ·

νjn−1∑

qn=0

ξ
di1

p1si1+dj1
q1sj1

1 · · · ξ
dinpnsin+djnqnsjn
n

g
dj1

q1
1 · · · g

djnqn
n (α′)g

di1
p1+dj1

q1
1 · · · g

dinpn+djnqn
n .

We write

dilpl = Pltl + dilp
′
l, where 0 ≤ Pl <

ml

tl
, 0 ≤ p′l <

tl
dil
,

djlql = P ′
l tl + djlq

′
l, where 0 ≤ P ′

l <
ml

tl
, 0 ≤ q′l <

tl
djl

,

dilkl ≡ (Pl + P ′
l )tl + dilp

′
l mod ml, where 0 ≤ kl < νil ,

for all 0 ≤ l ≤ n. Then the right side of the equation becomes

didj
|G|2

( m1
t1

−1∑

P ′
1
=0

ξ
P ′

1t1(r1+sj1−si1 )
1

)
· · ·

( mn
tn

−1∑

P ′
n=0

ξ
P ′

ntn(rn+sjn−sin )
n

)

( νi1−1∑

k1=0

· · ·

νin−1∑

kn=0

t1
dj1

−1
∑

q′
1
=0

· · ·

tn
djn

−1∑

q′n=0

ξ
di1

k1si1+dj1
q′1sj1

1 · · · ξ
dinknsin+djnq′nsjn
n

g
dj1

q′1
1 · · · g

djnq′n
n (α′)g

di1
k1+dj1

q′1
1 · · · g

dinkn+djnq′n
n

)
.

Note that
{
g
dj1

q′1
1 · · · g

djnq′n
n (α′)g

di1
k1+dj1

q′1
1 · · · g

dinkn+djnq′n
n

| 0 ≤ kl < νil , 0 ≤ q′l <
tl
djl

for 1 ≤ l ≤ n
}
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is a linearly independent set. We obtain that e(j,sj1 ,sj2 ,...,sjn )α
′e(i,si1 ,si2 ,...,sin ) 6=

0 if and only if sil ≡ sjl + rl mod ml

tl
for all 0 ≤ l ≤ n. It follows that there

are t1···tn|G|
didj

arrows in Q̂ for each arrow α : i′ → j′ in Q.

Denote by Â = (a(iρ)(jσ))Î×Î the Cartan matrix of Q̂, by Γ̂ the valued quiver

corresponding to (Q̂, G) and by Ĉ = (ĉij)I×I = D̂−1B̂ the generalized Cartan

matrix of Γ̂, where B̂ = (̂bij)I×I is symmetric, D̂ = diag(d̂i) is diagonal. Then

1

t1 · · · tn

∑

i′∈Oi
j′∈Oj

ai′j′ =
didj

t1 · · · tn|G|

∑

ρ∈irrGi
σ∈irrGj

a(iρ)(jσ).

It follows that b̂ij = |G|
didj

bij , D̂ = |G|D−1, B̂ = |G|D−1BD−1 and Ĉ =

(D̂)−1B̂ = BD−1 = CT , the transpose of C. Therefore Γ and Γ̂ are dual
valued graphs in the sense of [13].

Remark 3.7. If G ⊆ Aut(kQ) is a finite abelian group, we have given the dual

of (Q,G) and (Q̂, G) (see Proposition 3.6). However, for a non-abelian group
G ⊆ Aut(kQ), the conclusion does not hold in general. For example, let Q be
the quiver:

•
✑
✑✑✸

•

◗
◗◗s

•

✛•1

1′

1′′
2

It is well-known that the quiver automorphism group of Q is the group S3.

Accordingly, we obtain the generalized McKay quiver Q̂ of (Q,S3) as follows:

•

•

•

✲

✲

•

•

PPPPPq

✏✏✏✏✏✶

One can check that there does not exist a subgroup G′ of Aut(kQ̂) such that

the generalized McKay quiver of (Q̂, G′) is Q.
But if the action of G is “good”, there exists the duality still. For example,

we consider the finite non-abelian group

G =
〈
a, b | a3 = b2, b4 = 1, aba = b

〉
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and the quiver Q:

•

•

••

••

❄

�
�
�✒

❅
❅

❅■❅
❅
❅❘

�
�

�✠

✲✛❩❩⑥ ✚✚❃α∗

α
β

β∗
γ γ∗

1

1′

2

2′

3

3′

σ3

σ2 σ1

The action of G is given by

e1 e2 e3 e1′ e2′ e3′ α α∗

a e2 e3 e1 e2′ e3′ e1′ β β∗

b e1 e3 e2 e1′ e2′ e2′ −γ∗ γ

β β∗ γ γ∗ σ1 σ2 σ3
a γ γ∗ α α∗ σ2 σ3 σ1
b −β∗ β −α∗ α σ1 σ3 σ2

where ei is the idempotent element of kQ corresponding to vertex i, i ∈
{1, 2, 3, 1′, 2′, 3′}. By direct calculation, one see that the generalized McKay
quiver of (Q,G) is as follows:

• •

• •

••

••

✲✛

✲✛

✻

❄

✻

❄

❅
❅■

�
�✠

�
�✒

❅
❅❘

Q̂ :

α∗
1

α1

α3

α∗
3

α∗
2

α2

α4

α∗
4

1 4

2 3

1′ 4′

2′ 3′

σ1

σ2 σ3

σ4

Now, we define an action of G on kQ̂ by setting

e1 e2 e3 e4 e1′ e2′ e3′ e4′ α1 α2 α3 α4

a e3 e4 e1 e2 e3′ e4′ e1′ e4′ ξ2α3 ξ4α4 ξ2α1 ξ4α2

b e2 e3 e4 e1 e2′ e3′ e4′ e1′ α2 α3 α4 α1

α∗
1 α∗

2 α∗
3 α∗

4 σ1 σ2 σ3 σ4
a ξ2α∗

3 ξ4α∗
4 ξ2α∗

1 ξ4α∗
2 σ3 σ4 σ1 σ2

b α∗
2 α∗

3 α∗
4 α∗

1 σ2 σ3 σ4 σ1

where ξ is a primitive 6-th root of unity. Then, one can check that
̂̂
Q = Q.

3.3. Consider the admissible action of finite abelian group G on kQ̂ induced
from the action of G on kQ as the discussion above, we set

F ′ := (kQ ∗G) ∗G⊗
kQ∗G − : mod-kQ ∗G −→ mod-(kQ ∗G) ∗G,

H ′ := Res|
kQ∗G : mod-(kQ ∗G) ∗G −→ mod-kQ ∗G.
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Similar to the functors F and H , one can check that (H ′, F ′) and (F ′, H ′) are
adjoint pairs. Note that the Morita equivalence mod-kQ→ mod-(kQ∗G)∗G
is given by M := (kQ∗G)∗GkQ ∗G⊗

kQ −, we have:

Lemma 3.8. There are natural isomorphisms

F ∼= H ′M and F ′ ∼= MH.

Proof. First, H ′M =
kQ∗GkQ ∗G⊗

kQ − = F is clear. Next, since (H ′, F ′) is
an adjoint pair, for any kQ-module X and kQ ∗G-module Y , we have

Hom
kQ(X,M

−1F ′(Y )) ∼= Hom(kQ∗G)∗G(M(X), F ′(Y ))

∼= Hom
kQ∗G(H

′M(X), Y ) ∼= Hom
kQ∗G(F (X), Y ).

This implies that (F,M−1F ′) is an adjoint pair and so that H ∼= M−1F ′,
F ′ ∼= MH . �

By Lemma 3.8 and [18, Proposition 1.8], we have the following proposition
immediately.

Proposition 3.9. Let X and Y be indecomposable kQ ∗G-modules. Then

(1) FH(X) ∼= H ′F ′(X) ∼=
⊕

g∈G
gX;

(2) H(X) ∼= H(Y ) if and only if F ′(X) ∼= F ′(Y ), if and only if Y ∼= gX for

some g ∈ G;
(3) H(X) (or F ′(X)) has exactly |HX | indecomposable summands.

Remark 3.10. Consider the action of G on kQ ∗G, we denote by

HX := {g ∈ G | Fg(X) ∼= X}

and by GX a complete set of left coset representatives of HX in G, for any
X ∈ mod-kQ ∗ G. In [10], we have shown that the number of indecompos-
able summands of F ′(X) is just |HX | whenever G is abelian (see [10, Theorem
1.2]). This means that H(X) has |HX | indecomposable summands. Note that
H(X) is an indecomposable G-invariant kQ-module, there exists a unique in-
decomposable kQ-module M such that H(X) ∼=

∑
(M). Therefore, we have

|HX | = |GM | and |GX | = |HM |. Following from Proposition 3.9(2), for an
indecomposable kQ-module M , there are |GX | = |HM | non-isomorphic inde-
composable kQ∗G-module structures on

∑
(M). This coincides with the result

in [10].

For the generalized McKay quiver Q̂, we denote by (−,−)Q̂ the bilinear

form on ZÎ determined by Â, by ∆Q̂ the root system of Q̂ with simple roots

εiρ, (i, ρ) ∈ Î, and by W(Q̂) the Weyl group of Q̂ with simple reflections riρ,

(i, ρ) ∈ Î. Consider the map h : ZÎ → ZI defined above, we have:

Lemma 3.11. Let Ŝi :=
∏

ρ∈irrGi
riρ for i ∈ I. Then, for each i ∈ I and

β =
∑

(i,ρ)∈Î βiρεiρ ∈ ZÎ, we have

(1) (h(β), εi)Γ = di
∑

ρ∈irrGi
(β, εiρ)Q̂;
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(2) h(Ŝi(β)) = γi(h(β));

(3) the map γi 7→ Ŝi induces an isomorphism W(Γ)
≃
−→ CG(W(Q̂)), the set

of elements in W(Q̂) commuting with the action of G.

Proof. (1) By the dual between (Q,G) and (Q̂, G), we obtain that

bij =
∑

i′∈Oi
j′∈Oj

ai′j′ =
didj
|G|

∑

ρ∈irrGi
σ∈irrGj

a(iρ)(jσ),

and so that
bij = di

∑

ρ∈irrGi

a(iρ)(jσ)

for any σ ∈ irrGj . Therefore, we get

(h(β), ǫi)Γ =
∑

i,j∈I

bijh(β)j = di
∑

ρ∈irrGi
σ∈irrGj

a(iρ)(jσ)βjσ = di
∑

ρ∈irrGi

(β, εiρ)Q̂.

(2) Firstly, Ŝi is well-defined since the action of G on Q̂ is admissible. Sec-

ondly, it is easy to check that the bilinear form (−,−)Q̂ is G-invariant and Ŝi

commutes with the action of G. Thus, we have

h(Ŝi(β)) = h(β)−
∑

ρ∈irrGi

(β, εiρ)Q̂εi = h(β)−
1

di
(h(β), εi)Γεi = γi(h(β)).

(3) By induction on the length, one can check that CG(W(Q̂)) is generated

by Ŝi, i ∈ I. Following from (2), we get γi 7→ Si induces an isomorphism. �

We are in a position to complete the proof of Theorem 1.1. We have

shown that for any positive root α ∈ ∆Γ, there exists an indecomposable Q̂-
representation X such that h(dimX) = α. Moreover, if α is real, the number
of X (up to isomorphism) can be determined. Applying the technique in [12,
Proposition 15], we have:

Proposition 3.12. The map h : ∆Q̂ → ∆Γ is a surjection. If α ∈ ∆Γ is a

positive real root, then there is a unique G-orbit of roots mapping to α, and all

of which are real.

Proof. Firstly, by Corollary 3.4, the map h : ∆Q̂ → ∆Γ is well-defined. To show

the surjectivity, we need to fine the preimages of all the fundamental roots in
∆Q̂.

We suppose that Γ is connected. Then, for any α ∈ FΓ, we consider the set

R := {β ∈ ∆Q̂ | β is positive and h(β) ≤ α}.

Since R is finite and non-empty, we take an element β with maximal height.
Suppose that h(β)i < αi for all i ∈ I, then for any ρ ∈ irrGi, h(β + εiρ) =
h(β) + εi ≤ α. By the maximality of β, β + εiρ is not a root and so that
(β, εiρ)Q̂ ≥ 0. Thus (h(β), εi)Γ ≥ 0 for all i ∈ I. We conclude that h(β) and α
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have the same support, for otherwise, we can find such a vertex (i, ρ) adjacent
to the support of β such that (β, εiρ)Q̂ < 0.

We take α ∈ FΓ such that the support of α is I, and set

Φ := {i ∈ I | h(β)i = αi}.

If Φ is the empty set, then β + εiρ is not a root for any vertex (i, ρ) ∈ Q̂,

and so that the connected component of Q̂ which β lies in is Dynkin (see [13,

Proposition 4.9]). Therefore, Q̂must be a disjoint union of copies of this Dynkin

quiver, all in a single G-orbit. Thus Q̂ and Q are representation finite [18], Γ is
a connected Dynkin diagram. This contradicts to that α is a imaginary root.

It follows that Φ is non-empty. We denote by Φ̃ the full subgraph of Γ

determined by Φ. Let T be a non-empty connected component of Γ − Φ̃, and

let β̃ be the restriction of h(β) to T . If T 6= ∅, then for all vertices j ∈ T ,

we have (β̃, εj)T ≥ (h(β), εj)Γ ≥ 0, where (−,−)T is the restriction of (−,−)Γ
on T . Moreover, note that there exists a vertex j ∈ T adjacent to Φ̃, we have

(β̃, εj)T > 0. Therefore, T is a Dynkin diagram [13, Corollary 4.9]. On the

other hand, let β̃′ be the restriction of α−h(β) to T . Then β̃′ has the support
T , and for any vertex j ∈ T ,

(β̃′, εj)T = (α − h(β), εj)Γ = (α, εj)Γ − (h(β), εj)Γ ≤ 0.

Hence T is not Dynkin. This is a contradiction. Therefore, T is empty, Φ̃ = Γ
and so that h(β) = α. Thus, we have shown that h is surjective by Lemma
3.11(3).

In general, assume that Γ is non-connected. In this case, FΓ =
⋃
FΓ′ , where

Γ′ run over all connected components of Γ. By the discussion above, we see
that any element α ∈ FΓ, there exists an element β ∈ ∆Q̂ such that h(β) = α.

Hence, h is also surjective.
Finally, for any real root α ∈ ∆Γ, we let β ∈ ∆Q̂ be the element such that

h(β) = α. Then, there is an element ω′ ∈ W(Γ) and i ∈ I such that ω′(α) = εi.

Let ω be the element in CG(W(Q̂)) corresponding to ω′. It follows that ω(β)
must also be a simple root εiρ for some ρ ∈ irrGi. Therefore β is real and
uniquely determined up to a G-orbit. �

Consider the action of G on kQ̂, any g ∈ G also induces an additive au-

toequivalence functor Fg : mod-kQ̂ → mod-kQ̂, X 7→ gX. Here we also
denote by GX a complete set of left coset representatives of HX := {g ∈ G |

Fg(X) ∼= X} in G, for any X ∈ mod-kQ̂. Following from Kac’s Theorem,

for any positive real root β ∈ ∆Q̂, there exists a unique Q̂-representation X

such that dimX = β and HX = Hβ . By Proposition 3.12, there are |GX |

indecomposable Q̂-representations (up to isomorphism) such that the images
of their dimension vector under the map h are α, if h(dimX) = α. Thus the
proof of Theorem 1.1 is completed.
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4. Proof of Theorem 1.2

From now on, assume that k is an algebraically closed field with chark = 0,
and G ⊆ Aut(kQ) is a finite abelian group. In this section, we lift G to
G ⊆ Aut(g) such that the Kac-Moody algebra g(Γ) can be embedded into the

fixed point algebra gG. In this case, gG is integrable as a g(Γ)-module.
Firstly, we recall some notations of Kac-Moody algebras. For a symmetri-

cable generalized Cartan matrix C = (cij) of size n and rank l, there exist a
diagonal matrix D = diag(d1, . . . , dn) and a symmetric matrix B = (bij) such
that C = D−1B. In fact, di(1 ≤ i ≤ n) may be chosen to be positive integers.
Let h be a 2n− l dimension k-vector space. Choose linearly independent sets
{Hi ∈ h | 1 ≤ i ≤ n} and {εi ∈ h∗ | 1 ≤ i ≤ n} such that εj(Hi) = cij . Then the
triple (h, {εi}, {Hi})1≤i≤n is called a (minimal) realization of C. Since any

two realizations of C are isomorphic, there is a unique (up to isomorphism)
Kac-Moody algebra g(C) generated by h, Ei, Fi, 1 ≤ i ≤ n, with relations

[H,H ′] = 0, [H,Ej ] = εj(H)Ej , (adEi)
1−cijEj = 0,

[Ei, Fj ] = δijHi, [H,Fj ] = −εj(H)Fj , (adFi)
1−cijFj = 0,

for any H,H ′ ∈ h, where δij is the Kronecker sign. Moreover, the center c of
g(C) is given by

{H ∈ h | εi(H) = 0 for all 1 ≤ i ≤ n} ⊆ [g(C), g(C)].

For the details one can see [13].
For the pair (Q,G), we have obtained the valued graph Γ with symmet-

ricable generalized Cartan matrix C = (cij) of size |I| and the generalized

McKay quiver Q̂ with symmetric generalized Cartan matrix Â = (a(iρ)(jσ)) of

size |Î |, see Section 2. Therefore we have Kac-Moody algebras g(Γ) := g(C)

corresponding to the realization
(
h(Γ), {εi}, {Hi}

)
of C and g := g(Q̂) = g(Â)

corresponding to the realization
(
h, {εiρ}, {Hiρ}

)
of Â. Denote by r and s the

coranks of C and Â, then dim
k

h(Γ) = |I|+ r and dim
k

h = |Î|+ s.
We suppose that g(Γ) is generated by h(Γ) and Ei, F i, i ∈ I. There is a

symmetric bilinear form (−,−)Γ on h(Γ) such that

(Hi, H)Γ =
1

di
εi(H)

for allH ∈ h(Γ). Then we can extend it uniquely to an invariant non-degenerate
symmetric bilinear form on g(Γ) such that

(Ei, F i)Γ =
1

di
.

Moreover, (−,−)Γ determines a bijection ν : h(Γ) → h∗(Γ) sending Hi to
1
di
εi,

and hence induces a bilinear form on h∗(Γ). We also denote this bilinear form
by (−,−)Γ. Note that (εi, εi)Γ = bij . It recovers the bilinear form defined in
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Section 2.3 for the root lattice ZI. Similarly, there is a symmetric bilinear form

on h∗ = h∗(Q̂) with (εiρ, εjσ)Q̂ = a(iρ)(jσ) .

We now consider the action of G on the quiver Q̂ defined in Section 3.2.

Recall that the derived algebra g′ of g is generated by Hiρ, Eiρ, Fiρ, (i, ρ) ∈ Î

and the action of G on Q̂ satisfies

a(iρ)(jσ) = a(iρ′)(jσ′) if (i, ρ′) = g(i, ρ) and (j, σ′) = g(j, σ)

for some g ∈ G. Then, there is a natural action of G on g′ given by

g(Hiρ) = Hiρ′ , g(Eiρ) = Eiρ′ , g(Fiρ) = Fiρ′

for any g ∈ G. Denote by h′(Γ) and h′ the Cartan subalgebra of g′(Γ) :=
[g(Γ), g(Γ)] and g′ respectively. It is easy to see that the map

φ : h′(Γ) → (h′)G

given by φ(H i) =
∑

ρ∈irrGi
Hiρ is an isomorphism and

(H,H
′
)Γ =

1

|G|
(φ(H), φ(H

′
))Q̂

for H,H ∈ h′(Γ). In particular, the fixed point subalgebra cG of the center of

g(Q̂) is isomorphic to the center c(Γ) of g(Γ).
We wish to extend the action of G on g′ to the whole Lie algebra g. Let

Aut(Â) denote the set of permutations g of Î satisfying

a(iρ)(jσ) = a(lρ′)(kσ′) if (l, ρ′) = g(i, ρ) and (k, σ′) = g(j, σ).

Let DAut(g) denote the subgroup of Aut(g) consisting of the automorphisms
preserving each of the sets h, {Eiρ} and {Fiρ}.

Proposition 4.1 (see [14, Section 4.19]). There is a short exact sequence

0 → Hom
k

(h/h′, c) −→ DAut(g) −→ Aut(Â) → 0.

Proof. It is easy to see that g(Hiρ) = Hjσ , g(Eiρ) = Ejσ and g(Fiρ) = Fjσ

for any g ∈ DAut(g). Thus, there exists a unique permutation g ∈ Aut(Â)

corresponding to g such that (j, σ) = g(i, ρ). Moreover, each g ∈ Aut(Â) can
be obtained in this way.

Let Λ := kÎ be the subspace of h∗ spanned by {εiρ | (i, ρ) ∈ Î}. Then there

is a natural action of Aut(Â) on Λ: g(εiρ) = εjσ, where (j, σ) = g(i, ρ), g ∈ G,

and it induces an action of Aut(Â) on the quotient space h/c since h/c is dual to

Λ. It maps Hiρ mod c to Hjσ mod c, and so that h′/c is Aut(Â)-stable. Since

Aut(Â) is finite, there exists h′′ such that h = h′⊕h′′ and (h′′+ c)/c is Aut(Â)-

stable. For any g ∈ Aut(Â), we can define an automorphism g ∈ DAut(g)
by

g(Hiρ) = Hjσ , g(Eiρ) = Ejσ and g(Fiρ) = Fjσ ,

and g|h′′ is the pull-back of g on (h′′ + c)/c.
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Clearly, the kernel of the map DAut(g) → Aut(Â) is the subgroup Aut(g; g′)
consisting of all automorphisms acting trivially on g′. One can check that an
automorphism α ∈ Aut(g; g′) if and only if there exists a map ϕ : h′′ → c

such that α(H) = H + ϕ(H) for all H ∈ h′′. Thus, there are isomorphisms
Aut(g; g′) ∼= Hom

k

(h′′, c) ∼= Hom
k

(h/h′, c). �

Therefore, for each α ∈ Aut(g; g′) and g ∈ Aut(Â), we have an element
g ∈ DAut(g) by setting g|g′ = g and g|h′′ = α. Moreover, for any α ∈ Aut(g; g′)
corresponding to ϕ : h′′ → c, it is easy to see that αt(H) = H + tϕ(H) for any
t ∈ Z and H ∈ h′′. That is to say, an automorphism α ∈ Aut(g; g′) has finite
order if and only if the corresponding map ϕ : h′′ → c is zero.

We now fix Ω = {g1, g2, . . . , gn} a set of generators of G. We can view G

as a finite abelian subgroup of Aut(Â). By Proposition 4.1, we can lift G to
an automorphism group G = {g | g ∈ G} of g corresponding to a set of linear
maps {ϕi = ϕgi : h′′ → c | gi ∈ Ω}. It is easy to see that for any H ∈ h, we
have εiρ′ (g(H)) = εiρ(H) if (i, ρ′) = g(i, ρ). Let

S := span{εiρ − εiρ′ | i ∈ I, ρ, ρ′ ∈ irrGi} ⊆ h∗

and

H := {H ∈ h | εiρ(H) = εiρ′(H) for all ρ, ρ′ ∈ irrGi and i ∈ I} = annhS.

Then H contains the center c, H/c = (h/c)G and so that, for any lifting G of

G, HG = hG.

Lemma 4.2. H has k-dimension |I|+ s, H ∩ h′ has k-dimension |I|+ s− r
and therefore H ∩ h′′ has k-dimension r.

Proof. Fix a ρ ∈ irrGi, note that

{εiρ − εiρ′ | i ∈ I, ρ′ ∈ irrGi \ ρ}

is a basis of S, we obtain that dim
k

H = dim
k

h − dim
k

S = |I| + s. Since
(H∩h′)/c = (h′/c)G is isomorphic to (h′)G/cG, dim

k

(h′)G = |I| and dim
k

cG =
dim

k

c(Γ) = r, H ∩ h′ has k-dimension |I| + s − r and so that H ∩ h′′ has
k-dimension r. �

Proposition 4.3. Let G be a lifting of G to g corresponding to {ϕi : h
′′ → c |

1 ≤ i ≤ n}. Then
(
HG,

{
di
|G|

∑

ρ∈irrGi

εiρ

}
,

{ ∑

ρ∈irrGi

Hiρ

})

is a realization of C if and only if ϕi(H ∩ h′′) = 0 for all 1 ≤ i ≤ n.

Proof. We denote by

Hi :=
∑

ρ∈irrGi

Hiρ and ǫi :=
di
|G|

∑

ρ∈irrGi

εiρ
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for all i ∈ I. Since {Hi | i ∈ I} is a basis of (H ∩ h′)G, HG has dimension

|I|+r if and only if there are h′1, h
′
2, . . . , h

′
r ∈ HG spanning the complementary

space of (H ∩ h′)G in HG.

Since (h′′ + c)/c is G-stable,
(
(h′′ + c)/c

)G
has k-dimension r by Lemma 4.2.

We can find linearly independent elements h′′1 , h
′′
2 , . . . , h

′′
r ∈ H∩h′′ such that h′′i

mod c are fixed by G. Since ϕi(H∩h′′) = 0 for all i, h′′1 , h
′′
2 , . . . , h

′′
r are G-stable

and form a basis of H ∩ h′′. Therefore, we take h′i = h′′i for all 1 ≤ i ≤ r. On
the other hand, if we can find such elements h′1, h

′
2, . . . , h

′
r, then each h′′i has

the form

h′′i =

s∑

j=1

pijh
′
j −

∑

(j,σ)∈Î

qi(jσ)Hjσ

for some pij , qi(jσ) ∈ k, and

ϕl(h
′′
i ) = gl

( s∑

j=1

pijh
′
j −

∑

(j,σ)∈Î

qi(jσ)Hjσ

)
−

s∑

j=1

pijh
′
j +

∑

(j,σ)∈Î

qi(jσ)Hjσ

=
∑

(j,σ)∈Î

qi(jσ)(Hjσ −Hjσ1 ),

where (j, σ1) = gl(j, σ). It follows that

tϕl(h
′′
i ) =

∑

(j,σ)∈Î

qi(jσ)(Hjσ −Hjσt)

for any t ∈ Z, where (j, σt) = gtl (j, σ). Note that Î is a finite set, there exist

some t ∈ Z such that gtl (j, σ) = (j, σ) for all (j, σ) ∈ Î, and so that tϕl(h
′′
i ) = 0,

ϕl(h
′′
i ) = 0 for all i and l. Thus ϕi(H ∩ h′′) = 0 for any 1 ≤ i ≤ n.

Since

ǫj(Hi) =
di
|G|

∑

ρ∈irrGi
σ∈irrGj

εjσ(Hiρ) =
di
|G|

∑

ρ∈irrGi
σ∈irrGj

a(iρ)(jσ) = cij

and Hi (i ∈ I) are linearly independent, it remains to show ǫi, i ∈ I are linearly

independent modulo annh∗(HG). Let

ǫ :=
∑

j∈I

µjǫj ∈ annh∗(HG), µj ∈ k.

Then

0 = ǫ(Hi) =
∑

j∈I

µjǫj(Hi) =
∑

j∈I

cijµj

for all i ∈ I, and so that

ǫ(Hiρ) =
∑

j∈I

µjǫj(Hiρ) =
1

|G|

∑

j∈I

bijµj =
di
|G|

∑

j∈I

cijµj = 0
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for all (i, ρ) ∈ Î. Therefore,

ǫ ∈ annh∗(HG + h′) = annh∗(H + h′) ⊆ annh∗(H) = S.

It is equivalent to say

µjǫj =
djµj

|G|

∑

σ∈irrGj

εjσ ∈ span{εjρ − εjρ′ | ρ, ρ′ ∈ irrGj}

for each j ∈ I. It concludes that µj = 0 for all j ∈ I, and so that ǫj are linearly

independent in (HG)∗. The proof is completed. �

Remark 4.4. Since
Hom

k

(h′′, c) ∼= Hom
k

(h/h′, c),

for any lifting G of G, there exists a family of maps {ψi = ψgi : h/h′ → c |
gi ∈ Ω} corresponding to it. Moreover, it is easy to see that the condition
ϕi(H ∩ h′′) = 0 is equivalent to ψi((H + h′)/h′) = 0.

Now we can prove the main results of this section.

Proposition 4.5. There is a monomorphism g′(Γ) → (g′)G, and for the lifting

G of G corresponding to {ϕi : h
′′ → c | 1 ≤ i ≤ n} with ϕi(H∩ h′′) = 0, we can

extend this monomorphism to the whole Lie algebra such that

g(Γ) → gG

is also a monomorphism.

Proof. We set

Hi :=
∑

ρ∈irrGi

Hiρ, Ei :=
∑

ρ∈irrGi

Eiρ, Fi :=
∑

ρ∈irrGi

Fiρ

for all i ∈ I. Then Hi, Ei, Fi ∈ (g′)G and

[Hi, Hj ] = 0,

[Ei, Fj ] =
∑

ρ∈irrGi
σ∈irrGj

[Eiρ, Fjσ ] = δij
∑

ρ∈irrGi

Hiρ = δijHi,

[Hi, Ej ] =
∑

ρ∈irrGi
σ∈irrGj

[Hiρ, Ejσ ] =
∑

ρ∈irrGi
σ∈irrGj

a(iρ)(jσ)Ejσ = cij
∑

σ∈irrGj

Ejσ = cijEj .

Similarly, we have [Hi, Fj ] = cijFj for any i, j ∈ I. Note that adEiρ and adEiρ′

commute for any ρ, ρ′ ∈ irrGi, we have

(adEi)
n =

∑

λ

Φn
λ

∏

ρ∈irrGi

(adEiρ)
λρ

for any positive integer n, where λ takes though all the sequence λ = (λρ)ρ∈irrGi

satisfying ∑

ρ∈irrGi

λρ = n,
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and the combinatorial number

Φn
λ =

(
n
ρ1

)(
n− ρ1
ρ2

)
· · ·

(
n− ρ1 − · · · − ρ|irrGi|−1

ρ|irrGi|

)

for any λ = (ρ1, ρ2, . . . , ρ|irrGi|). In particular, if n = 1 − cij , then λρ >
1− a(iρ)(jσ) for some ρ ∈ irrGi and so that

(adEiρ)
λρEjσ = 0, (adEi)

1−cijEj = 0.

Similarly, (adFi)
1−cijFj = 0 for any i, j ∈ I. Therefore, there exists a non-zero

homomorphism g′(Γ) → (g′)G.

Since
(
HG, { di

|G|φ(εi)}, {φ(Hi)}
)
is a realization of C by Proposition 4.3,

there is an isomorphism h(Γ) → HG, Hi → Hi. Therefore we can get a

homomorphism g(Γ) → gG by compositing the homomorphisms g′(Γ) → (g′)G

and h(Γ) → HG. By [13, Proposition 1.7(b)], g(Γ) → gG and g′(Γ) → (g′)G

are monomorphisms. �

Now, we can identify g(Γ) with a subalgebra of gG. Following from Section
3.1, the map

h : ZÎ → ZI, β 7→ h(β), h(β)i =
∑

ρ∈irrGi

βiρ,

satisfies

di

(
β,

∑

ρ∈irrGi

εiρ

)

Q̂

= (h(β), εi)Γ

for all β =
∑

(i,ρ)∈Î βiρεiρ ∈ ZÎ and h(∆Q̂) = ∆Γ by Proposition 3.12.

Proposition 4.6. The monomorphism g(Γ) → gG endows gG with an inte-

grable g(Γ)-module structure under the adjoint action of g(Γ).

Proof. Firstly, we identity the realization
(
h(Γ), {εi}, {Hi}

)
with

(
HG, {ǫi},

{Hi}
)
. For any non-zero β =

∑
(i,ρ)∈Î βiρεiρ ∈ ∆Q̂ and H ∈ HG, we have

εiρ(H) =
di
|G|

∑

ρ∈irrGi

εiρ(H) = εi(H)

and

β(H) =
∑

(i,ρ)∈Î

βiρεiρ(H) =
∑

i∈I

( ∑

ρ∈irrGi

βiρ

)
εi(H) =

∑

i∈I

h(β)iεi(H) = h(β)(H).

Denote by Hβ = {g ∈ G | g(β) = β} and Gβ a complete set of left coset
representatives of Hβ in G. Then Hβ acts on the root space gβ . Suppose that
x ∈ gβ satisfies g(x) = x for any g ∈ Hβ . Let

Σ(x) :=
∑

g∈Gβ

g(x).
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It is easy to see that Σ(x) ∈ gG and

[H,Σ(x)] =
∑

g∈Gβ

g(β)(H)g(x) = h(β)(H)
∑

g∈Gβ

g(x) = h(β)(H)Σ(x)

for all H ∈ HG, since h(g(β)) = h(β) for any g ∈ G. It follows that Σ(x) lies in

the weight space (gG)h(β). Note that each element in gG can be written as a sum

of some Σ(x) with x ∈ gβ , β ∈ ∆Q̂, we obtain that gG is h(Γ)-diagonalisable.

Secondly, it is easy to see that the non-zero weights of gG must be roots of
Γ since h(∆Q̂) = ∆Γ. On the other hand, every root of Γ is also a weight of

gG under the adjoint action by the monomorphism g(Γ) → gG.
Finally, for any β ∈ ∆Γ, the set {β + kεi | k ∈ Z} ∩∆Γ is finite. Thus the

action of Ei and F i are local nilpotent on gG. The proof is completed. �

Following from the proof of Proposition 4.6, (gG)α is spanned by the elements
Σ(x) =

∑
g∈Gβ

g(x), where x ∈ gβ satisfies g(x) = x for any g ∈ Hβ , and

β ∈ ∆Q̂ satisfies h(β) = α. Thus, by the action of G on {Eiρ} and {Fiρ}, the
action of Hβ on gβ is identity and so that

dim
k

(gG)h(β) = 1

for any simple root β. That is, dim
k

(gG)α = 1 for all simple root α ∈ ∆Γ.
Moreover, we have the following claim.

Claim 4.7. dim
k

(gG)α = 1 for any real root α ∈ ∆Γ.

Proof. We consider the automorphism

riρ := exp(adFiρ)exp(−adEiρ)exp(adFiρ)

of g. Then riρ(gβ) = griρ(β) and riρ(H) = H − εiρ(H)Hiρ for any H ∈ h (see
[13, Lemma 3.8]). Note that riρ and riρ′ commute for any ρ, ρ′ ∈ irrGi, we let

Si :=
∏

ρ∈irrGi

riρ.

Then, for any H ∈ HG, we have

Si(H) = H −
∑

ρ∈irrGi

εiρ(H)Hiρ = H − ǫi(H)
∑

ρ∈irrGi

Hiρ = H − ǫi(H)Hi,

and Si(H) ∈ HG. Note that Si and G commute on g′, it deduces that Si can

define an automorphism of gG such that

Si

(
(gG)α

)
= (gG)Ŝi(α)

.

Thus, Si is an extension of the automorphism exp(adF i)exp(−adEi)exp(adF i)
of g(Γ).

Let α ∈ ∆Γ be a real root. By Lemma 3.11 and Proposition 3.12, there

exist a real root β ∈ ∆Q̂ and ω ∈ CG(W(Q̂)) such that h(β) = α, ω(β) is a
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simple root and Hω(β) = Hβ . Let ω = Ŝi1 Ŝi2 · · · Ŝir and ω = Si1Si2 · · ·Sir ,
then ω(gβ) = gω(β) and hence gβ is fixed by Hβ. Finally, note that all these β

are in the same G-orbit, we have dim
k

(gG)α = 1. �

In particular, if Q is a finite union of Dynkin quivers, then g is a direct sum
of simple Lie algebras and all roots of Γ are real. By the claim, we have:

Corollary 4.8. If Q is a finite union of Dynkin quivers and G ⊆ Aut(kQ) is

finite abelian, then there is a Lie algebra isomorphism g(Γ) ∼= gG.

5. Examples

In this section, we give two examples to elucidate our results.

Example 5.1. Let Q = (I, E) be the quiver:

•

•

•

•

3

4

1
2 ❍❍❍❥

✟✟✟✯
✛ α

β

γ

The action of G = 〈g〉 ∼= Z/6Z on kQ given by

e1 e2 e3 e4 α β γ
g e1 e3 e4 e2 −β −γ −α

where ei is the idempotent element of kQ corresponding to vertex i, i ∈
{1, 2, 3, 4}. Then the Cartan matrix of Q is

A = (aij) =




2 −1 −1 −1
−1 2 0 0
−1 0 2 0
−1 0 0 2


.

Let ε1, ε2, ε3, ε4 be all the simple roots of the symmetric Kac-Moody algebra
g(Q). We endow the root lattice ZI with a symmetric bilinear form (−,−)Q
via (εi, εj)Q = aij and define reflection ri : α 7→ α − (α, εi)Qεi for each vertex
i ∈ I. Then, it is well-known that Weyl group W(Q) ∼= (Z/2Z)3 ⋊ S4, and one
can check that ∆Q = ±{ε1, ε2, ε3, ε4, ε1 + ε2, ε1 + ε3, ε1 + ε4, ε1 + ε2 + ε3, ε1 +
ε2 + ε4, ε1 + ε3 + ε4, ε1 + ε2 + ε3 + ε4, 2ε1 + ε2 + ε3 + ε4} is the root system of
g(Q).

We get the generalized McKay quiver Q̂ = (Î , Ê) of (Q,G) as follows:

•

•

•

•

(1, ρ3)

(1, ρ5)

(2, σ0)
(1, ρ1)

❍❍❍❨

✟✟✟✙✲α1

α3

α5

•

•

•

•

(1, ρ2)

(1, ρ4)

(2, σ1)
(1, ρ0)

❍❍❍❨

✟✟✟✙✲α0

α2

α4

where ρi is the irreducible representation of G = 〈g〉 ∼= Z/6Z defined by

a · g = ξia, a ∈ ρi,
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σj is the irreducible representation of 〈g3〉 ∼= Z/2Z defined by

b · g3 = ξ3jb, b ∈ σj ,

and ξ is a primitive 6-th root of unity. As we have discussed in Section 3.2, by
the group isomorphism

ϕ : G→ G̃, ϕ(gi) = χgi , χgi(gj) = ξij ,

we define the action of G on kQ ∗G by setting

gi(λgj) = ξijλgj

for any gi ∈ G, λgj ∈ kQ ∗G. This induces an action of G = 〈g〉 ∼= Z/6Z on

kQ̂ given by

e0 e1 e2 e3 e4 e5 e′0 e′1 α0 α1 α2 α3 α4 α5

g e1 e2 e3 e4 e5 e0 e′1 e′0 ξ0α1 ξ1α2 ξ2α3 ξ3α4 ξ4α5 ξ5α0

where idempotent elements ei, e
′
i are corresponding to the vertices (1, ρi), (2, σi)

respectively, and ξi ∈ k satisfying ξ0ξ1 · · · ξ5 = 1. One can check that the

generalized McKay quiver of (Q̂, G) is just the quiver Q.
By the definition given in Section 2.3, we obtain the symmetrisable general-

ized Cartan matrix C corresponding to (Q,G), i.e.,

C =

(
2 −1
−3 2

)
.

Then the valued graph Γ corresponding to C is

• •Γ :
(3, 1)

1 2

Let ε1, ε2 be all the simple roots of Γ. Then the Weyl group

W(Γ) ∼= D6 = 〈a, b | a2 = 1, b3 = 1, ab = b−1a〉

and root system ∆Γ = {ε1, ε2, ε1+ε2, 2ε1+ε2, 3ε1+ε2, 3ε1+2ε2}. See Section
2.3 for detail.

We consider the map

h : ZÎ −→ ZI, h(α)i =
∑

ρ∈irrGi

αiρ

for any α =
∑

(i,ρ)∈Î αiρε(iρ)∈Î ∈ ZÎ. The restriction of h : ∆Q̂ → ∆Γ is

surjective, this means that for any positive root β of Γ, there exists an inde-

composable Q̂-representation X such that h(dimX) = β. For example, we
consider the positive root ε1 + ε2 ∈ ∆Γ. Then, we have the following indecom-

posable Q̂-representation X(ρ3σ0):

k

0

k

0

❍❍❍❨

✟✟✟✙✲0
1

0

0

0

0

0

❍❍❍❨

✟✟✟✙✲0
0

0
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and obviously, h(dimX(ρ3σ0)) = ε1 + ε2. Furthermore, for any 0 ≤ l ≤ 5,

0 ≤ j ≤ 1 and l 6≡ j mod 2, we define the Q̂-representationX(ρlσj) = (Xiρ, Xα)
by

Xiρ =

{
k, if (i, ρ) = (1, ρl) or (2, σj);
0, otherwise.

Xα =

{
1, if α = αl;
0, otherwise.

Then, it is easy to see that the set of all indecomposable Q̂-representations
with h(dimX) = ε1 + ε2 is the set

{
X(ρlσj) | 0 ≤ l ≤ 5, 0 ≤ j ≤ 1 and l 6≡ j mod 2

}
,

and which is just the orbit of X(ρ1σ0) under that action of G. Similarly, for
any positive real root β = h(α) ∈ ∆Γ, there are |Hα| (up to isomorphism)

indecomposable Q̂-representations X such that h(dimX) = β.

Example 5.2. Let Q = (I, E) be the quiver

•

•

••

•5

3
4

1
2

◗◗❦

✑✑✰

✛

✛

α1

α4

α2

α3
•

•

••

•5′
3′

4′

1′
2′

◗◗❦

✑✑✰

✛

✛

α′
1

α′
4

α′
2

α′
3

and G = 〈a〉 × 〈b〉 ∼= Z/2Z× Z/2Z. The action of G on kQ is given as follows

e1 e2 e3 e4 e5 e1′ e2′ e3′ e4′ e5′

a e5 e4 e3 e2 e1 e5′ e4′ e3′ e2′ e1′

b e1′ e2′ e3′ e4′ e5′ e1 e2 e3 e4 e5
α1 α2 α3 α4 α′

1 α′
2 α′

3 α′
4

a α4 α3 α2 α1 α′
4 α′

3 α′
2 α′

1

b α′
1 α′

2 α′
3 α′

4 α1 α2 α3 α4

where ei is the idempotent element of kQ corresponding to the vertex i. Take
I = {1, 2, 3}. Then the generalized McKay quiver of (Q,G) is

•

•

•

•

(3, ρ0)

(3, ρ1)

2
1

✟✟✟✙

❍❍❍❨
✛

Q̂ :

where ρ0, ρ1 are the non-isomorphism irreducible representations of G3 = 〈a〉 ∼=
Z/2Z. Reindexing the vertex set Î = {1, 2, (3, ρ0), (3, ρ1)} by {1, 2, 3, 4}, the

Cartan matrix of Q̂ is

A = (aij) =




2 −1 0 0
−1 2 −1 −1
0 −1 2 0
0 −1 0 2


.
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The Lie algebra g := g(Q̂) is generated by {xi, yi, hi | 1 ≤ i ≤ 4} satisfying the
relations

[hi, hj ] = 0, [xi, yj ] = δijhi;
[hi, xj ] = aijxj , [hi, yj] = −aijyj ;
(adxi)

1−aij (xj) = 0, (adyi)
1−aij (yj) = 0, i 6= j.

In this case, the valued graph Γ of (Q,G) is

• ••
1 2 3

(2, 1)

with the Cartan Matrix

C =




2 −1 0
−1 2 −1
0 −2 2


.

The Lie algebra g(Γ) is generated by {Xi, Yi, Hi | 1 ≤ i ≤ 3} satisfying the
relations

[Hi, Hj] = 0, [Xi, Yj ] = δijHi;
[Hi, Xj] = cijXj , [Hi, Yj ] = −cijYj ;
(adXi)

1−cij (Xj) = 0, (adYi)
1−cij (Yj) = 0, i 6= j.

(1)

As the discussion in Section 3.2, we see that the vertices (3, ρ0) and (3, ρ1) of

Q̂ are in the same G-orbit. Therefore, the Lie algebra gG is generated by

{xi, yi, hi | 1 ≤ i ≤ 3},

where xi = xi, yi = yi, hi = hi for i = 1, 2, and x3 = x3 + x4, y3 = y3 + y4,
h3 = h3 + h4, satisfying the relations (1). Then, it is easy to see that the map

Φ : g(Γ) −→ gG

given by

Φ(Xi) = xi, Φ(Yi) = yi, Φ(Hi) = hi

is a Lie algebra isomorphism.
At last, we consider the following Dynkin quivers:

A2n+1(n ≥ 1) :

1

1′ ✲

✲ 2

2′ ✲

✲

· · ·

· · ·

✲

✲ n

n′✑✑✸
◗◗s n+ 1

Dn(n ≥ 4) :

n− 2
✑✑✸

n− 1′

◗◗s n− 1,
1 ✲ 2 ✲ · · · ✲

,

D′
4 :

1 2✛ ✟✟✟✯

❍❍❍❥
1′

1′′

,

E6 :

1 2 3 2′ 1′.

4

✲ ✲ ✛ ✛

✻
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We equip the quivers A2n+1, Dn and E6 with the quiver automorphism group
G = Z/2Z. For the quiver D′

4, we consider its quiver automorphism group
G = Z/3Z. Then, we have

Q G Γ Q̂ Γ̂ Conclusion

A2n+1 Z/2Z Bn+1 Dn+2 Cn+1 g(Bn+1) ∼= g(Dn+2)
Z/2Z

Dn Z/2Z Cn−1 A2n−1 Bn−1 g(Cn−1) ∼= g(A2n−1)
Z/2Z

D′
4 Z/3Z G2 D′ op

4 G2 g(G2) ∼= g(D′
4)

Z/3Z

E6 Z/2Z F4 Eop
6 F4 g(F4) ∼= g(E6)

Z/2Z

where D′op
4 and Eop

6 are the opposite quiver of D′
4 and E6, respectively. Bn,

Cn, F4 and G2 mean the B-type, C-type, F -type and G-type Dynkin graph
respectively (see [7]).

We conclude that all the finite-dimensional simple Lie algebras correspond-
ing to the Dynkin graphs with multiple edges can be realized by the fix point
algebras of the simple Lie algebras corresponding to the Dynkin graphs without
multiple edges.
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