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GENERALIZED MCKAY QUIVERS, ROOT SYSTEM AND
KAC-MOODY ALGEBRAS

Bo Hou AND SHILIN YANG

ABSTRACT. Let @ be a finite quiver and G C Aut(kQ) a finite abelian
group. Assume that @ and I' are the generalized Mckay quiver and the
valued graph corresponding to (Q, G) respectively. In this paper we dis-
cuss the relationship between indecomposable @—representations and the
root system of Kac-Moody algebra g(I'). Moreover, we may lift G to

GC Aut( (@)) such that g(I') embeds into the fixed point algebra g(@)é
and g(Q)@ as a g(I')-module is integrable.

1. Introduction

Thirty years ago, McKay introduced a class of quivers, now called the McKay
quivers, for some finite subgroups of the general linear group [16]. Let C denote
the complex number field. McKay observed that the McKay quivers for the
subgroups of SL(2,C) are the double quivers of the extended Dynkin quivers
/Tn, En, Eg, E7, Eg. McKay quiver has played an important role in many
mathematical fields such as quantum group, algebraic geometry, mathematics
physics and representation theory (see, for examples [2, 4, 8, 9, 15, 17]).

Let V be a finite vector space over an algebraically closed field k of charac-
teristic 0 and G C GLg (V) a finite group. Assume that Tk(V') is the tensor
algebra of V' over k. It is well-known that the skew group algebra T (V) «* G
is Morita equivalent to the path algebra ]kQ, where Q is the McKay quiver of
G (see [9]). In other words, the McKay quiver realizes the Gabriel quiver of
T (V) * G. It is natural to ask how to determine the Gabriel quiver of skew
group algebra A x G for any algebra A. Recently, for arbitrary path algebra k@
over an algebraically closed field k and a finite group G such that chark ¢ |G|, if
the action of G on k@ permutes the set of primitive idempotents and stabiliz-
ing the vector space spanned by the arrows, Demonet in [5] has constructed a
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quiver @ such that the path algebra ]k@ is Morita equivalent to the skew group
algebra k@ * G. The quiver @ can be viewed as a generalization of McKay
quiver, which is called the generalized McKay quiver of (@, G) in this paper.

Given a finite quiver @) with an admissible automorphism a. Hubery in
[11, 12] described the correspondence between dimension vectors of the iso-
morphically invariant Q-indecomposables and the positive root system of g(I'),
where T is the valued graph of (@, a). Deng, Du, et al. proved that the similar
correspondence between representations of the species of (@, a) over finite field
and the positive root system of g(T') by Frobenius morphism [6]. Motivated
by Hubery’s work, the aim of this paper is to establish the correspondence
between the indecomposable @—representations and the positive roots of the
symmetrizable Kac-Moody algebra g(I') of the valued graph I' associated to
(Q, G), where @ is a finite quiver and G is a finite abelian automorphism group
of kQ. Moreover, we can lift G to an automorphism group G of Kac-Moody
algebra g := g(@) of Q, such that g(T") can be embedded into the fixed point
subalgebra g“. In this case, we also show that g“ as a g(I')-module is inte-
grable. Compared with Hubery’s work, a more general description is given by
approach of the generalized McKay quiver.

For a finite quiver @ = (I, E) and a finite abelian group G C Aut(kQ) (the
algebra automorphism group of k@). We always assume that the action of G
on @ is admissible, i.e., no arrow connects vertices in the same G-orbit. Then
we can get a valued graph I'" without loops and a generalized McKay quiver
Q corresponding to (Q,G). By [18], we can define an action of G on kQ due
to the Morita equivalence between the skew group algebra k@ * G and ]kQ.
Therefore this action induces an action on @ representations. Let Gx be a
complete set of left coset representatives of Hy = {g € G |9X = X} in G for
any Q representation X, let ZI, ZI and ZT be the root lattice of Q, Q and L,
respectively. Applying the equivalence between representation category of Q
and module category of the skew group algebra k@ * G and the fact that each
k@ * G module as a @-representation is G-invariant, we define a map

h: ZI —s (ZI)¢ — ZT

where (ZI)€ is the fixed point set of ZI under the action of G. The map h builds
a bridge between the dimension vectors of indecomposable @—representations
and the root system of Kac-Moody algebra g(I'). The first main result of this
paper is described as follows.

Theorem 1.1. Let QQ be a quiver without loops and with an admissible action
of a finite abelian subgroup G C Aut(kQ), and k be an algebraically closed field
with chark 1 |G|. Assume that T' and @ are the valued graph and generalized
McKay quiver associated to (Q,G), respectively. Then

(1) the images under h of the dimension vectors of all the indecomposable
@-representations give the positive root system of the Kac-Moody algebra g(T');



GENERALIZED MCKAY QUIVERS 241

(2) for each positive real root o of g(T'), let X be a @—T@presentation such

that h(dimX) = . Then there are |Gx| indecomposable Q-representations
(up to isomorphism) such that their dimension vectors under h are a.

The proof of this theorem is based on understanding the relationship among
indecomposable @-representations, indecomposable k@ x G-modules and inde-
composable G-invariant @-representations. In the proof, we also need the dual
between (Q,G) and (Q,G). This duality is first discussed in [18] for a finite
quiver with an automorphism. Here we give a general and strict proof by the
generalized McKay quiver.

Next we consider the relationship between Kac-Moody algebra g(I') and the
fixed point subalgebra g& whenever chark = 0. The action of G on @ naturally
induces an action on the derived algebra g’ of g. Let Q@ = {¢1,92,...,9n}
be a set of generators of G. Following from [14], we lift G to G C Aut(g)
corresponding to a family of linear maps {¢; := g4, : h/b’ — ¢ | g; € Q}, where
¢ is the center of g, h and b’ are the Cartan subalgebra of g and g’ respectively.
Denote by C the symmetrisable generalized Cartan matrix of the valued graph
I'. Then, we can give a realization (H%, {¢;}, {h;}) of C by the fixed point set
h& of b, and we obtain that:

Theorem 1.2. For the lifting G of G corresponding to {1; : h/h' — ¢ | g; € Q}
such that 1; (1 +b')/b') = 0, there is a monomorphism

() — ©.

Moreover this monomorphism endows ga with an integrable g(T')-module struc-
ture under the adjoint action of g(I'). In particular, if Q is a finite union of

Dynkin quivers, then g(T") = a% as Lie algebras.

In the end of this paper, two examples are given to elucidate our results.

Throughout this paper, let k denote an algebraic closed field and Z denote
the set of integers. We denote by G the finite group such that chark t |G|,
denote by mod-A the category of (left) A-modules for any k-algebra A.

2. Preliminaries

2.1. Recall that a quiver @ = (I, E) is an oriented graph with I the set of
vertices and F the set of arrows. A quiver () is said to be finite if I and E are
all finite set. An arrow in @ is called a loop if its staring vertex coincides with
its terminating vertex. In this paper we only consider a finite quiver without
loops. Therefore we have a path algebra k@ for a quiver @ (see [1, 3]).

A representation X = (X;, X,) of the quiver Q = (I, F) consists of a family
of k-vector spaces X; for i € I, together with a family of k-linear maps X, :
X; = Xj for a : 9 — jin E. Given two representations X and Y of @, a
morphism ¢ : X — Y is given by a family of k-linear maps ¢; : X; = Y; (i € I)
such that ¢; o X, = Y, o ¢; for each arrow o : ¢ — j. It is well-known that
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the category of representations of () is naturally equivalent to the category
of k@-modules (see [1, 3]). Thus we always identify a k@-module X with a
Q-representation (X;, X,) in this paper.

2.2. Assume that A is a k-algebra and G acts on A, the skew group algebra
of A under the action of G is by definition the k-algebra whose underlying
k-vector space is A ®y k[G] and whose multiplication is defined by

A@gN@g) = ) ®gd

for all A\, ) € A and g,¢9" € G (see [18]). For convenience, we denote this
algebra by A * G, denote the element A ® g in A * G by A\g. Note that A and
k[G] can be viewed as subalgebras of A x G.

Let A = k@ be the path algebra for a quiver Q@ = (I, F). Assume that
the cation of G on k@ permutes the set of primitive idempotents {e; | ¢ € I}
and stabilizes the vector space spanned by the arrows. Let Z denote a set of
representatives of the orbits of I under the action of G. For any i € I, let G;
denote the subgroup of G stabilizing e;. For each ¢ € I, there exist some g € G
such that g=1(i) € Z. We fix such a g and denote it by k;. Let O; be the orbit
of i under the action of G. For (i,7) € Z%, G acts on O; x O; by the diagonal
action. A set of representatives of the orbits of this action will be denoted by
Fij.

For i,5 € I, we denote by F;; C kQ the vector space spanned by the arrows
from i to j and regard it as a left and right k[G;;] := k[G; N G,]-module by
restricting the action of G. In [5] Demonet defined the quiver Q = (I, E) as
follows

I= U{z} x irrG;,
ieT
where irrG; is a set of representatives of isomorphism classes of irreducible
representations of G;. The set of arrows of Q from (i, p) to (j, o) is a basis of

@ Homy(q,, ) ((P' Kir)

(¢,3")€Fij

Gi/j/a (J ! Kj/)|Gi/j/ Ok Ei/j/) )

where the representation p - k; of G is the same as p as a k-vector space,
and (p - Kkir)g = pm/gfi;,l for each g € Gy = n;lei/. Demonet yielded the
following theorem.

Theorem 2.1 (see [5]). The category mod-kQ is equivalent to the category
mod-kQ x G.

In particular, if the quiver @ is a single vertex with m loops, we can view G
as a subgroup of GL,, (k). Then the quiver @ is just the McKay quiver of G.
Thus, we view @ as a generalization of McKay quiver in general. Furthermore,
for any factor algebra kQ/J, the shew group algebra (kQ/J) *x G is Morita
equivalent to a factor algebra of ]k@. This implies that the generalized McKay
quiver can realize the Garbiel quiver of A x G for any basic algebra A.
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2.3. For a quiver @ = (I, E), there is a corresponding symmetric generalized
Cartan matrix A = (a;;) indexed by I with entries

.- i =J;
g = { —|{edges between vertices i and j}|, @ # j.

It is obvious that A is independent of the orientation of Q.

Denote by g(Q) the associated symmetric Kac-Moody algebra corresponding
to A with the simple root set Il = {e; | i € I'} and root system Ag. The root
lattice ZI of @ is the free abelian group on II, with the partially order such
that a = ). ; a;e; > 0 if and only if a; > 0 for all i € I. We endow ZI with
a symmetric bilinear form (—, —)¢g via (g4,€;)Q = a;;. Then, for each vertex
i € I, we have a reflection r; : o — a — (e, &;)gei. These reflections generate
the Weyl group W(Q) of Q. The real roots of ) are given by the images under
W(Q) of the simple roots €; and the imaginary roots are given by + the images
under W(Q) of the fundamental set

Fo:={a>0]|(aei)g <0 for all i and the support of « is connected}.

Suppose that the action of G on path algebra k@ permutes the set of primi-
tive idempotents. The action of G is said to be admissible if no arrow connects
to vertices in the same G-orbit. For any quiver Q with an admissible action of
G, we can construct a symmetric matrix B = (b;;) indexed by Z, where

7 —|{edges between vertices in O; and O;}|, i # j.

Let d; := b;;/2 = |0;] and D = diag(d;). Then C = (¢;;) = D™'B is a
symmetrisable generalized Cartan matrix indexed by Z. It is well-known that
there is a unique valued graph I' corresponding to the matrix C' by [7]. The
valued graph I" has the vertex set Z and an edge +—j equipped with the ordered
pair (|cjsl, |cij|) whenever ¢;; # 0. Since the action of G is admissible, I" has
no loops. For each connected component I of the graph I', we always take
the representative set Z such that the underlying graph of the full subquiver
generated by the vertices in I is connected.

Denote by g(I") for the associated symmetric Kac-Moody algebra corre-
sponding to C. The simple root set and root system of I' are denoted by
IIr = {&; | i € Z} and Ar. Let ZZ denote the root lattice of T'. There is a sym-
metric bilinear form (—, —)r determined by B on ZZ such that (£;,&;)r = byj,
and a reflection ~; on ZZ defined by

Vit a— d—(a,gi)p@
for each ¢ € Z. These reflections generate the Weyl group W(T') of I'. Similarly,
we have the real roots and the imaginary roots associated to I" (see [13]).
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3. Proof of Theorem 1.1

From now on, unless otherwise stated we fix a finite group G C Aut(kQ)
and assume that the action of G is admissible. Let @ and I be the generalized
Mckay quiver and the valued graph corresponding to (@, G). In this section,
we show that the correspondence between indecomposable representations of
@ and the positive root system of I'.

3.1. The group G acts naturally on the root lattice ZI, i.e., g(e;) = gg4(;) for
any g € G. It is easy to check that this action preserves the partial order >
and the bilinear form (—, —)¢ is G-invariant. Let

(D¢ = {a € ZI | g(a) = a for any g € G}.
There is a canonical bijection
f: (@n® —zz
given by
f( Z aiEi) = Z QGE;.
iel i€z
The admissibility of the action of G implies that the reflections ; and r; com-
mute whenever ¢ and j lie in the same G-orbit. Therefore the element

S; = H Ty € W(Q)
i'eQ;

is well-defined for any i« € Z. Note that gor; = ry;) o g for any g € G, we
have S; € Co(W(Q)), the set of elements in the Weyl group commuting with
the action of G. By induction on the length of the element in Ce(W(Q)), it is
easy to check that Ca(WW(Q)) is generated by S;, i € Z.

Similar to [12, Lemma 3], we have:

Lemma 3.1. For any o, B € (ZI)%, we have

(1) (@, B)q = (f(a), F(B))r-
(2) f(Si(@)) =vi(f(a) € ZT foric T. .
(3) The map ~; — S; induces a group isomorphism W(') — Ca(W(Q)).

Proof. (1) Set €’ := Y, o, €. Then {¢’ | i € I} is a basis of (ZI)¢. Since

(e e)o =Y awy =bi; = (Ei,E))r

i’eO;
Jj'€0;
for any 4,7 € Z, (1) is obvious.
(2) Since the bilinear form (—, —)¢ is G-invariant, we have

Si(a) = a— Z (a,e0)geir = a— Z %(a, Z Ej)QEi/ = a—d—i(f(a),gi,)rgi

i'e€0; i'€O; v JjeO;



GENERALIZED MCKAY QUIVERS 245

by (1). We obtain that

1
f(Si(a)) = fla) = E(f(a)fi')ra =7i(f(@)).
(3) By the result of (2), it is easy to check that 7; and S; satisfy the same
relations. Thus W(I') = Ca(W(Q)). O

For a given a € ZI, let H, = {g € G | g(a) = a}. Then H, is a subgroup
of G. We denote by G, a complete set of representatives of left cosets of H,,
in G, and let

(o) = Z g(a).
9€Gao
Obviously, ¥(a) € (ZI)¢ and we have:

Lemma 3.2. The map o — f(2(a)) induces a surjection m : Ag — Ar.
Moreover, if f(X(«)) is a real root, « has to be real and unique up to G-orbit.

Proof. First, for any w € Ca(W(Q)), we have H, = H,q) since the action
of C¢(W(Q)) and the action of G on ZI is commutative. Thus we can take
Go = Gua) for any w € Ca(W(Q)).

We now consider 3 := w'(f(X(x))) with w’ € W(T'). Let w € Ca(W(Q))
be the element corresponding to w’ under the isomorphism in Lemma 3.1(3).
Then 8 = f(w(E(a))) = f(E(w(e))) has connected support since the support
of «v is connected. It is either positive or negative since ¥ preserves the partial
order >. Denote by Og the orbit of 5 under the action of W(I'). Then

o if all elements in Og are positive, the element in Og with minimal
height lies in Fr;
o if all elements in Og are negative, the element in Og with maximal
height lies in —FT;
e otherwise, there exists a positive number m and ¢ € Z such that mg; €
Og.
In the last case, we have w(a) = me; for some w € W(Q), i/ € O;. But
w(a) € Ag, we must have m = 1 and so that &, € Og. Thus § is a root of I’
and m: Ag — Ar, a — f(2X(«)) is well-defined.

Now, we prove that the map 7 is surjective. Here we only need to show that

Fr lies in the image of m. For any 3 € Fr, v := f~!(3) satisfies

0> (8,8)r = (1S = Y (19(en))q = di(v,ei)o
9€Ge,,
for any ¢ € Z and ¢’ € O;. Thus any connected component « of - lies in Fg
and 3(«) = 7. By Lemma 3.1(3) we get the proof. O
For any g € G, we have an additive autoequivalence functor
Fy: mod-kQQ — mod-k@
M — IM
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where the k@-module 9M is defined by taking the same underlying vector
space as M with the action m - A\ = mg~!()\) for m € M and X € kQ, and
F,() = ¢ for any homomorphism ¢ : M — N. Let (M;, Ma)icr.acE be
the Q-representation corresponding to M. Then the Q-representation 9M is
(gXinga)iEI,aeE; where 9X; = ngl(i) and X, = Zﬂ CﬁXﬁ if gil(Oz) =
Zg (gB, BeE, (3ek.

A kQ@-module M is said to be G-invariant if Fy(M) = M for any g € G;
a G-invariant k@-module M is said to be indecomposable G-invariant if M is
non-zero and M cannot be written as a direct sum of two non-zero G-invariant
k@-modules. It is known that k@-module M has a k@ * G-module structure
if and only if M is G-invariant, and the full subcategory of mod-k@ generated
by the G-invariant k@-module is also a Krull-Schmidt category (see [10]).

For a given k@-module M, we let Hyy :={g € G | F;(M) = M} and G
be a complete set of left coset representatives of Hps in G. Then for each
k@-module M, we define a G-invariant k@Q-module

> (M):= M.

9E€EG M

It is easy to see that each G-invariant k@-module has this form. For each k@-
module M, we denote the dimension vector of M by the linear combination
dimX := ), ;dimX;e; € ZI. It is easy to see that dimFy(M) = g(dimM)
for any g € G and M € mod-kQ.

Proposition 3.3. For any indecomposable G-invariant kQ-module M , we have
f(dimM) is a root of T'. Moreover, for any positive real root S of T, there
is a unique (up to isomorphism) indecomposable G-invariant kQ-module M
with %(dimM, dimM)q indecomposable summands (as kQ-module) such that
f(dimM) = .

Proof. Let N be an indecomposable k@-module and « := dimN. Then
>7(N) is an indecomposable G-invariant k@-module with dimension vector
> gecy 9(a). We claim that

S g(a) = mS(a)
9geGN

for some positive integer m. Indeed, since Hy C H,, we have |H,| = m|Hy|
and so that |Gy | = m|Gq| for some positive integer m. Note that

Z g(a) = % and Z gla) = %7
geGq g
we obtain that

geGnN g€Ga
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In particular, if « is a real root of O, then Hy = H, and so that we take
GN = G, in this case. Therefore, f(dim} (N)) € Ar. Note that for every
indecomposable G-invariant k@Q-module M, there is an indecomposable kQ-
module N such that M = > (N), we get f(dimM) € Ar.

If 8 := f(dimM) is a real root with f(dimM) = w'(g;) for some w’ €
W(') and i € Z, then dimM = w(X(ey)) = E(w(ey)) for any i/ € O,
where w € Ce(W(Q)) corresponding to w’, by the proof of Lemma 3.2. De-
note by N the unique indecomposable k@Q-module with dimN = w(e; ), then
M = Y (N) is the unique indecomposable G-invariant kQ-module satisfying
dimM = w(X(er)) and M is independent on the taking of i’ € O;. Finally,
note that

1, .. ] 1
§(d11’nM, dll’nM)Q = 5(2(61'/), Z(Ei/))Q = dl = |G5i,| = |GN|,
we are done. O

We suppose now that G is abelian with identity o, and let
e:= Zeiw e k@ * G,
=s
where e; is the idempotent element of k@) corresponding to vertex ¢ € I. By the
proof of [5, Theorem 1], we know that k@ * G is Morita equivalent to ek@ x Ge
and ek@ x Ge = k@. Thus we view the functor
E: modkQ+G — mod-kQ
M — eM

as the equivalence functor between mod-k@ * G and mod—]k@. Denote by

F:=kQ+*GQrg —: mod-k@Q — mod-kQ xG,
H :=Res|kg : mod-kQ *xG — mod-kQ.

Following from [5, Theorem 1.1}, (H, F') and (F, H) are adjoint pairs.
Moreover, for any kQ-module X, HE~1(X) is a G-invariant kQ-module
and there is a kQ-module M such that HE~1(X) = Y (M), where E~! is the

quasi-inverse of E. Identifying X with a Q-representation (X;,, X«), we have
> Xip2eHE ™ (X)ei = P (M)
pEirrG; geGm
Suppose dimX := Z(ip)efaipsip, then

Y oap= Y dim(gM)i:f(dimZ(M))

.
pEirrG; ge€Gnm

Therefore, the Moriat equivalence and the restriction functor induce a map

h: 7ZI — 7T
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given by h(a); = Zpemci a8, for any o = Z(ip)efaipfip € ZI. The restric-
tion of h to the root system A@ is also denoted by h. Then h : A@ — Ar is

well-defined since X is an indecomposable ]k@-module if and only if M is an
indecomposable k@Q-module. By Proposition 3.3, we have:

Corollary 3.4. For any indecomposable @—representation X, h(dimX) is a
positive root of T'.

Up to now, we have obtained the map h : ZI — 7T and have shown the
half of Theorem 1.1(1). Before completing the proof of Theorem 1.1, we should
define an action of G on ]k@ and give the dual between (@, G) and (@, G). In
the following subsection, we first describe the duality of (Q, G).

3.2. We write the abelian group G as the product of finite cyclic groups, i.e.,

G = (g1) x (g2) X -+ X (gn),
where the order of g; is m; for 1 < i <n. Then |G| = mymg---m,,.

We now define an action of G on @ Since G is abelian, all the characters x
of G are linear. The set of all the characters of G is an abelian group with the
multiplication

xX'(9) = x(9)x'(9)
for all g € G. We denote this group by G. Setting ¢ : G — G by
P(9) = X9 Xol9') =67 €0

if g=gl'gl?---gl» and ¢’ = ¢i'g5* - - g3, where & is a primitive m;-th root

of unity. It is easy to see that ¢ is a group isomorphism. By [18], we define a
linear action of G on k@ * G by setting

g(Ah) = xg(h)Ah
for all g € G, Ah € k@ * G. Then G C Aut(kQ@ * G). By [18, Proposition 5.1],
we have:
Proposition 3.5. The map ¢ : (kQ x G) * G — Endig(kQ * G) defined by

(Agh)(uh') = xn(h')Agub/
is an algebra isomorphism. It follows that (kQ x G) * G is Morita equivalent to
kQ.

Moreover, note that x,(w) = 1 for any g € G, where w is the identity of
G. We get g(e) = e. Denote by 9 : ek@ x Ge — ]k@ the algebra isomorphism,
then for any a € ]k@, there is a unique b € ek@ x Ge, such that ¥(b) = a.
Let g(a) = ¥(g(b)) for any g € G. This induces an action of G on kQ such
that G C Aut(]k@). Therefore, we get a skew group algebra ]k@ * G under this

o~

action. Let @ be the generalized McKay quiver of (@,G). Then, there is a

Morita equivalence between ]k@ * G and ]k@ by Theorem 2.1. Therefore, we
have:
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Proposition 3.6. Let @ be the generalized McKay quiver of (Q,G) under the

A

action of G defined as above. Then the generalized McKay quiver C/Q\ of (@, G)
coincides with Q).

Thus we get the dual between (Q, G) and (@, G). Now, for the relationship
between quivers @ and @, and the action of G on ), we give some more
description. Note that the stabilizer G; of i € I has the form

d'il diZ din
Gi=(g;") x(927) x -+ x (gn'™),

where
d; . m;
o K — 9 1
vy =gy =50, 1<j<n,
dij
and so that
d,|o|f|G|7d. d e ds
;= 17|G'|7“x12x x d;, .
(2
We set
€(4,561 ,8ig-1Sin )
1 Vil—ll/ig—l Vi, —1 0 g b Ao i dei d
i1J18i in]2Si in JnSin i1J1 inJ2 inJ
- |Gi| Z Z Z 51” 115212 RS anln 9212 cegn

J1=0 j2=0 Jn=0

) | si, € Zjvy,Z for all 1 < j < n}is
a complete set of primitive orthogonal idempotents of k[G;].
It is obvious that

Then one can check that {e(i,Sil,

Sigye3Sip

9j (e(i,sil \Sig ,...,sin)> = e(i,sil yeesSig g ,séj 1S 4 yeesSin)

for any 1 < j < n, where s;j € Z/v;;Z and s;j = 5i;+1 mod v;;. Since for each
idempotent €(; s, s, ....s;,), there is a unique corresponding one dimensional
irreducible representation p of G; defined by the group homomorphism ¢, :

di; s . . =~
Gi—k g’ — §d’f i, for 1 < j < n. Thus we can index the vertex set I by
some sequences (i, 8i,, Siys - - -, S, ), 1.€.,

I= {(i,sil,siz,...,sin) |i€Z,s;; € Z/v;Z forall 1< gn}.

Then the action of G on I is clear and so that the orbit of (i,p) € I has the
form

{(iasinsiw-'-vsin) | Si; € Z/VijZ for 1 S]S n} = {(va) | pE iI‘I‘Gi}

for some ¢ € Z. Furthermore, it is easy to see that if the action of G on k@ is
admissible, then so is on ]k@.

Foranyi,j € Z,i € O; and j' € O;, we consider the group G;; := G;NG,; =
(giv) x (g&?) x -+ x {gt»), where t; is the least common multiple of d;, and d;,
for 1 <1 < n. Note that the vector space E; ; spanned by arrows o : i’ — j' in
Q is a k[G;;]-bimodule, we can find a basis of E; j; such that the action of G;;
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is diagonal. That is, if g = gflg? -~ gt € k[G,;], then for any basis element

CY/ S Ei’j’a
g(a/) —_ §i1T1§§2T2 . ,g;flnTnO/

for some ri,72,...,7, € Z. Since G;; is abelian, the number of the basis
elements of Ey ;s is just the number of arrows from ¢’ to j’ in Q. Moreover, it
is easy to see that the t1ts - - - t,, elements

o, gi(a),. .., gald)), G3(d), g1g2(d), ..., gt lgh gl ()

are linearly independent. That is, for any arrow « : i/ — j’ in @, there are
tits - - - t,, arrows in its orbit.
On the other hand, we can calculate that

/
e(j,sh ,Sj2 yeesSin ) X E(4, Siq ’SiZ yeesSin)

1/11 Vi, —1 V5 — Vi, —1
diyp18iq+djq q155, . ¢GinPrsiy tdj, Gnsjy
|G|2 Z Z Z Z & &n
Pn=0 q1= qn=0
dji q dj, Gn iy P1tdjq dip Pnt+dj, Gn
gl“l"'gn]q(a')glll Jll"-gnp Jndn
We write
my t
dilpl:]Dltl+dilp;7 whereOSPl<;, 0§p2<d—',
iy
my 14
dj, a1 :]Dl/tl+djlql/a WheI‘eOSPl/< ?, 0§q1’< 1.
Ji

diy ki = (P, + P))t; + d;;p; mod m;, where 0 <k <y,

for all 0 <1 < n. Then the right side of the equation becomes

Piti(ri+sj, —siy) e Pty (rn+sj, —Sin)
|G|2<Z€1 1 1)(26" )

Pl =
vip —1 Vi —
Z Z Z Z gdnlﬂsn +d;j, 4755, ...é.dinknsin—i-djnq;sjvn
n
k1=0 kn=0 /=0 ¢/, =0
dj, 4} dj,a, diy ki1+dj, 44 dip kntdj, q,
gljl‘h . 'gnjnqn(a/)gl 1R1Te 9 'inn n+dj, q,
Note that

djlqll djndy (1 di1k1+dj1q/1 dip knt+dj, ap
{91 g’ () gy " On

t
|O§kzl<yil,0§q1’<d—lf0r1§l§n}
Ji
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is a linearly independent set. We obtain that e(; 5, 7sj27m,sjn)o/e(i7sil (SinreeSin) #+

0 if and only if 5;, = s;, + 7 mod T—ll for all 0 < < n. It follows that there

titn |G|
did]‘

are arrows in @ for each arrow «: 4" — 7/ in Q.

Denote by A= (a(ip)(jo)) 7 7 the Cartan matrix of @, by T the valued quiver
corresponding to (@, G) and by C = (Cij)zxz = DB the generalized Cartan
matrix of I', where B = (b;;)zxz is symmetric, D = diag(d;) is diagonal. Then

1 d;d;
t1- -t Z dirg = t1 - tn|G] Z A(ip)(jo)-

'€, pEirrG;
4’ Eo]‘ a-elrrGj

It follows that by = 4%-by;, D = |GID~Y, B = |G|D~'BD~" and C =

(D)"'B = BD™! = CT, the transpose of C. Therefore I and T' are dual
valued graphs in the sense of [13].

Remark 3.7. If G C Aut(kQ) is a finite abelian group, we have given the dual

of (Q,G) and (@, G) (see Proposition 3.6). However, for a non-abelian group
G C Aut(k@), the conclusion does not hold in general. For example, let @ be
the quiver:

It is well-known that the quiver automorphism group of @ is the group Ss.
Accordingly, we obtain the generalized McKay quiver @ of (@, Ss) as follows:

=
N

One can check that there does not exist a subgroup G’ of Aut(kQ) such that
the generalized McKay quiver of (@, G is Q.

But if the action of G is “good”, there exists the duality still. For example,
we consider the finite non-abelian group

G={(abla®=V" b'=1, aba =b)
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and the quiver Q:

Toe e o

.47.

\ / 1
°3
0‘31
[ ] 3/
The action of G is given by
| er1 ey e ey ey ey o
al e2 e3 e ey ey ey f B
b €1 €3 €9 ey €g/ €9/ 7'}/* Y
| B B v Y o1 o2 o3
a |y v« o o9 03 01
b|—-p* B —a a o1 o3 09

where e; is the idempotent element of k@) corresponding to vertex i, i €

{1,2,3,1',2', 3'}. By direct calculation, one see that the generalized McKay
quiver of (@, G) is as follows:

- Q3
o as 3&3
'y e
Now, we define an action of G on ]k@ by setting
| €1 €2 €3 €4 €1y €Cx €3 ey Qg a2 as 2
a €3 €4 €1 €2 €3/ €y ey €y «52043 €4Oé4 62041 64042
b €9 €3 €4 €1 €gr (£Y €y’ (AL (6%} Qa3 g (5]
af s fa% ay o1 09 03 04
al| €af af Ea} oy o3 o4 o1 02
b| o} fa% o) o] oy 03 04 O1

where ¢ is a primitive 6-th root of unity. Then, one can check that @ =Q.

3.3. Consider the admissible action of finite abelian group G on Ik@ induced
from the action of G on k(@ as the discussion above, we set

"= (kQ * G) * G Qrg+a — : mod-kQ@ * G — mod-(kQ * G) x G,
H' := Res|kg+a : mod- (k@ * G) x G — mod-kQ x G.
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Similar to the functors F' and H, one can check that (H', F') and (F', H') are
adjoint pairs. Note that the Morita equivalence mod-k@ — mod-(kQ *G) G
is given by M 1= (xg«q)xc k@ * G ®rq —, we have:

Lemma 3.8. There are natural isomorphisms
F2HM and F = MH.
Proof. First, H M = x0.c¢kQ * G ®kqg — = F is clear. Next, since (H', F’) is
an adjoint pair, for any k@Q-module X and k@ * G-module Y, we have
Homyq (X, M~ F'(Y)) = Hom(xgwg)sc (M(X), F'(Y))
=~ Homyg«a(H' M(X),Y) = Homyg.q(F(X),Y).

This implies that (F, M~1F’) is an adjoint pair and so that H = M~1F’
'~ MH. (I

By Lemma 3.8 and [18, Proposition 1.8], we have the following proposition
immediately.

Proposition 3.9. Let X and Y be indecomposable k@) *x G-modules. Then
(1) FH(X) = H'F'(X) = @, ' X:
(2) HX) > H(Y) if and only if F'(X) =2 F'(Y), if and only if Y 29X for
some g € G,
(3) H(X) (or F'(X)) has exactly |Hx| indecomposable summands.

Remark 3.10. Consider the action of G on k@ * G, we denote by
Hx ={ge G| Fy(X)=X}

and by Gx a complete set of left coset representatives of Hy in G, for any
X € mod-kQ@ * G. In [10], we have shown that the number of indecompos-
able summands of F/(X) is just |Hx| whenever G is abelian (see [10, Theorem
1.2]). This means that H(X) has |Hx| indecomposable summands. Note that
H(X) is an indecomposable G-invariant k@-module, there exists a unique in-
decomposable k@Q-module M such that H(X) = > (M). Therefore, we have
|Hx| = |Gum| and |Gx| = |Hp|. Following from Proposition 3.9(2), for an
indecomposable k@Q-module M, there are |Gx| = |Hps| non-isomorphic inde-
composable k@ *G-module structures on Y (M ). This coincides with the result
in [10].

For the generalized McKay quiver @, we denote by (—, —)@ the bilinear
form on ZI determined by A, by A@ the root system of ) with simple roots
€ip, (4, pA) € I, and by W(Q) the \iVeyl group of @ with simple reflections r;,,
(i,p) € 1. Consider the map h : ZI — ZT defined above, we have:

Lemma 3.11. Let §1 = HpeinGi rip for @ € I. Then, for each i € I and
8= Z(i,p)efﬁipgip € ZI, we have

(1) (B(B),20r = di e, (Bozin) o
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(2) h(5:(8)) = 7i(h(B));

(3) the map ~; — S; induces an isomorphism W(T') — Ca(W(Q)), the set
of elements in W(Q) commuting with the action of G.

Proof. (1) By the dual between (Q, G) and (@, G), we obtain that

did,
bij= Y awy = ﬁ Y o)

'€, pEirrG;
4’ on oGirrGj

and so that
bij=di Y i)
pEirrG,
for any o € irrG;. Therefore, we get

(h(B),€)r = Z bijh(8); = di Z aip)(jo) Bio = di Z (B:€ip) -

1,j€L pEIITG, p€irrG;
o€irrG’j

(2) Firstly, S; is well-defined since the action of G on @ is admissible. Sec-
ondly, it is easy to check that the bilinear form (—, 7)@ is G-invariant and S;
commutes with the action of G. Thus, we have

h(Si(B)) = h(B) — D (B.2ip)gZi = h(B) — 5 (h(B),E:)rZi = 7 (h(B)).
pEirrG;
(3) By induction on the length, one can check that Cg(W(@)) is generated
by S;, i € Z. Following from (2), we get ; — S; induces an isomorphism. [

We are in a position to complete the proof of Theorem 1.1. We have
shown that for any positive root o € Ar, there exists an indecomposable @—
representation X such that h(dimX) = a. Moreover, if « is real, the number
of X (up to isomorphism) can be determined. Applying the technique in [12,
Proposition 15|, we have:

Proposition 3.12. The map h : A@ — Ar is a surjection. If a € Ar is a
positive real root, then there is a unique G-orbit of roots mapping to o, and all
of which are real.

Proof. Firstly, by Corollary 3.4, the map h : A 5 Ar is well-defined. To show
the surjectivity, we need to fine the preimages of all the fundamental roots in
A@.
We suppose that I' is connected. Then, for any o € Fr, we consider the set
R:={B € Ag | B is positive and h(B) < a}.

Since R is finite and non-empty, we take an element S with maximal height.
Suppose that h(5); < «; for all ¢ € Z, then for any p € irrG;, h(f + €;p) =
h(B) + & < a. By the maximality of 3, B8 + €;, is not a root and so that
(B,€ip)g = 0. Thus (h(B),Ei)r = 0 for all i € Z. We conclude that h(53) and «



GENERALIZED MCKAY QUIVERS 255

have the same support, for otherwise, we can find such a vertex (i, p) adjacent
to the support of 3 such that (ﬁ,zsip)@ < 0.
We take o € Fr such that the support of « is Z, and set

If ® is the empty set, then 5 + ¢;, is not a root for any vertex (i,p) € @,
and so that the connected component of @ which £ lies in is Dynkin (see [13,
Proposition 4.9]). Therefore, @ must be a disjoint union of copies of this Dynkin
quiver, all in a single G-orbit. Thus @ and @ are representation finite [18], " is
a connected Dynkin diagram. This contradicts to that « is a imaginary root.

It follows that ® is non-empty. We denote by ® the full subgraph of T’
determined by ®. Let T be a non-empty connected component of I' — 5, and
let E be the restriction of h(8) to T. If T # 0, then for all vertices j € T,
we have (8, gi)r > (h(B),E;)r > 0, where (—, —)r is the restriction of (—, —)r
on T'. Moreover, note that there exists a vertex j € T adjacent to CT), we have
(B, g;)r > 0. Therefore, T is a Dynkin diagram [13, Corollary 4.9]. On the
other hand, let E’ be the restriction of « — h(8) to T. Then B’ has the support
T, and for any vertex j € T,

(B8.%)r = (a — h(B),E))r = (a,F;)r — (h(B),E;)r < 0.

Hence T is not Dynkin. This is a contradiction. Therefore, T' is empty, =T
and so that h(8) = a. Thus, we have shown that h is surjective by Lemma
3.11(3).

In general, assume that T is non-connected. In this case, Fr = |J Frv, where
IV run over all connected components of I'. By the discussion above, we see
that any element a € F, there exists an element § € Ag such that h(53) = a.
Hence, h is also surjective.

Finally, for any real root a € Ar, we let 8 € A@ be the element such that
h(B) = a. Then, there is an element w’ € W(I') and ¢ € 7 such that w'(a) =&;.
Let w be the element in Co(W(Q)) corresponding to «’. It follows that w(S3)
must also be a simple root ¢;, for some p € irrG;. Therefore 3 is real and
uniquely determined up to a G-orbit. (I

Consider the action of G on ]k@, any g € G also induces an additive au-
toequivalence functor Fj : mod—]k@ — mod—]k@, X — 9X. Here we also
denote by Gx a complete set of left coset representatives of Hx := {g € G |
Fy(X) =2 X} in G, for any X € mod—]k@. Following from Kac’s Theorem,
for any positive real root 5 € A@, there exists a unique @—representation X
such that dimX = 8 and Hx = Hg. By Proposition 3.12, there are |Gx]|
indecomposable @—representations (up to isomorphism) such that the images
of their dimension vector under the map h are «, if h(dimX) = «. Thus the
proof of Theorem 1.1 is completed.
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4. Proof of Theorem 1.2

From now on, assume that k is an algebraically closed field with chark = 0,
and G C Aut(kQ) is a finite abelian group. In this section, we lift G to
G C Aut(g) such that the Kac-Moody algebra g(I') can be embedded into the
fixed point algebra g. In this case, g& is integrable as a g(I')-module.

Firstly, we recall some notations of Kac-Moody algebras. For a symmetri-
cable generalized Cartan matrix C' = (¢;;) of size n and rank [, there exist a
diagonal matrix D = diag(ds,...,d,) and a symmetric matrix B = (b;;) such
that C = D~!B. In fact, d;(1 < i < n) may be chosen to be positive integers.
Let h be a 2n — [ dimension k-vector space. Choose linearly independent sets
{H; €h|1<i<n}and{e €bh*|1 <i<n}suchthate;(H;) = c;;. Then the
triple (b,{e;},{Hi}) <;<, is called a (minimal) realization of C. Since any
two realizations of C' are isomorphic, there is a unique (up to isomorphism)
Kac-Moody algebra g(C) generated by b, F;, F;, 1 <i < n, with relations

[H,H'] =0, [H,E;j]=¢;(H)E; (adE;) ¢ E; = 0,
[Ei, FJ] = 5ini; [H, FJ] = —Ej(H)Fj (adFi)l_c”Fj = 0,
for any H, H' € b, where J;; is the Kronecker sign. Moreover, the center ¢ of
g(C) is given by

{Hep|e(H)=0forall 1 <i<n}Cl[g(C),g(C)].

For the details one can see [13].

For the pair (@, G), we have obtained the valued graph I'" with symmet-
ricable generalized Cartan matrix C' = (c¢;;) of size |Z| and the generalized
McKay quiver Q with symmetric generalized Cartan matrix A = (aip)(joy) of
size |1], see Section 2. Therefore we have Kac-Moody algebras g(I') := g(C)
corresponding to the realization (h(I'),{g;},{H;}) of C and g := a(Q) = g(A)
corresponding to the realization (h, {€ip}, {Hip}) of A. Denote by r and s the
coranks of C' and A, then dimyh(T) = |Z| 4 r and dimyh = |I| + s.

We suppose that g(T") is generated by h(I') and E;, F;, i« € Z. There is a

symmetric bilinear form (—, —)r on §(I') such that
— 1 —
(Hi, H)r = —&i(H)

for all H € h(I'). Then we can extend it uniquely to an invariant non-degenerate
symmetric bilinear form on g(I") such that

— = 1
(E;, Fi)r = 4
Moreover, (—, —)r determines a bijection v : h(I') — h*(T') sending H; to +-&;,

and hence induces a bilinear form on §*(I'). We also denote this bilinear form
by (=, —)r. Note that (£;,;)r = b;;. It recovers the bilinear form defined in
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Section 2.3 fgr the root lattice ZZ. Similarly, there is a symmetric bilinear form
on h* = h*(Q) with (Eip,ajg)@ = Q(ip)(jo)-

We now consider the action of G on the quiver @ defined in Section 3.2.
Recall that the derived algebra g’ of g is generated by H;,, Fi,, Fi,, (i,p) € 7

and the action of G on @ satisfies
Wip)(jo) = Aip)Gory if (i,p") = g(i, p) and (j,0") = g(j,0)
for some g € G. Then, there is a natural action of G on g’ given by
9(Hip) = Hipr,  9(Eip) = Eipr,  g(Fip) = Fip
for any g € G. Denote by §’(T") and b’ the Cartan subalgebra of ¢'(T") :=
[9(T"),9(I")] and ¢ respectively. It is easy to see that the map
o1 B'() = (H)°

given by ¢(H;) = > peirrg; Hip is an isomorphism and

1 — —
— — (6(H), 6(H)) 5

(6.0 )

for H,H € '('). In particular, the fixed point subalgebra ¢“ of the center of
g(@) is isomorphic to the center ¢(T") of g(T").

We wish to extend the action of G on g’ to the whole Lie algebra g. Let
Aut(ﬁ) denote the set of permutations g of T satisfying

(H.H)r

Aip)(jo) = A(p ko) 1f (I, ") = g(i, p) and (k,0") = g(j,0).
Let DAut(g) denote the subgroup of Aut(g) consisting of the automorphisms
preserving each of the sets h, {E;,} and {F;,}.

Proposition 4.1 (see [14, Section 4.19]). There is a short exact sequence

-~

0 — Homu (h/h’, ¢) — DAut(g) — Aut(A) — 0.
Proof. 1t is easy to see that §(H;,) = Hjo, §(Eip) = Ej, and §(F;,) = Fj,

.

for any g € DAut(g). Thus, there exists a unique permutation g € Aut(A)

-~

corresponding to g such that (j,0) = g(i, p). Moreover, each g € Aut(A) can
be obtained in this way.
Let A := kI be the subspace of h* spanned by {e;, | (¢,p) € I}. Then there

-~

is a natural action of Aut(A) on A: g(e;,) = €5, Where (j,0) = g(i,p), g € G,
and it induces an action of Aut(A) on the quotient space h/c since /¢ is dual to

-~

A. Tt maps H;, mod ¢ to Hj, mod ¢, and so that h’/c is Aut(A)-stable. Since

-~

Aut(A) is finite, there exists h” such that h = §’ ®h” and (h” +¢)/c is Aut(A)-
stable. For any g € Aut(A4), we can define an automorphism g € DAut(g)
by

9(Hip) = Hjo, g(Eip) = Ejo and  g(Fi) = Fjo,

and gy~ is the pull-back of g on (h” + ¢)/c.
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-~

Clearly, the kernel of the map DAut(g) — Aut(A) is the subgroup Aut(g; g’)
consisting of all automorphisms acting trivially on g’. One can check that an
automorphism a € Aut(g;g’) if and only if there exists a map ¢ : b’ — ¢
such that «(H) = H + ¢(H) for all H € . Thus, there are isomorphisms
Aut(g; ¢') = Homy (h”, ¢) = Homy (h/b', ). O

-~

Therefore, for each o € Aut(g;g’) and g € Aut(A4), we have an element
g € DAut(g) by setting |y = g and g|y» = . Moreover, for any o € Aut(g; g’)
corresponding to ¢ : h” — ¢, it is easy to see that o' (H) = H + tp(H) for any
t € Z and H € ”. That is to say, an automorphism « € Aut(g; g’) has finite
order if and only if the corresponding map ¢ : " — ¢ is zero.

We now fix Q = {g1,92,...,9n} a set of generators of G. We can view G
as a finite abelian subgroup of Aut(A). By Proposition 4.1, we can lift G to
an automorphism group G = {g | g € G} of g corresponding to a set of linear
maps {p; = g, : b’ — ¢ | gi € Q}. It is easy to see that for any H € b, we
have e;, (G(H)) = €i,(H) if (2,p") = g(4, p). Let

S :=span{e;, — iy |1 €I, p,p’ € irrG,;} C h*
and
H:={Heb|e,(H)=¢c;y(H) for all p,p’ € irrG; and i € I} = annyS.

Then H contains the center ¢, H/c = (h/¢)¢ and so that, for any lifting G' of
G, HE =p.
Lemma 4.2. H has k-dimension |Z| + s, H Ny has k-dimension |Z|+ s —r
and therefore HN ' has k-dimension r.
Proof. Fix a p € irrG;, note that

{eip —cip |1 €T, p' € r1G; \ p}

is a basis of S, we obtain that dimpH = dimkh — dimS = |Z| + s. Since
(HNb')/c = (§'/c)€ is isomorphic to (h')¢/cC, dimy (h' ) = |Z| and dimyc® =
dimyc(T') = r, H N b’ has k-dimension |Z| + s — r and so that H N " has
k-dimension 7. (]

Proposition 4.3. Let G be a lifting of G to g corresponding to {p; : " — ¢ |

1<i<n}. Then
(@, 2 2 el)

pEirrG; pEirrG;
is a realization of C if and only if ;(HNBH") =0 for all1 <i< n.
Proof. We denote by

H; := Z H;, and ¢ :=
peirrG;

E Eip

d;
|G| peirrG;
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for all i € Z. Since {H; | i € I} is a basis of (% N §)¢, HY has dimension
|Z| 4+ r if and only if there are hY, hL, ... hl € HE spanning the complementary
space of (H N )¢ in HC.

Since (h” +¢)/c is G-stable, ((h” + c)/c)G has k-dimension r by Lemma 4.2.
We can find linearly independent elements hY, hY, ..., kY € HNb” such that b}
mod ¢ are fixed by G. Since @;(HNH") =0 for all 4, b, Y, ..., hl’ are G-stable
and form a basis of H N §h”. Therefore, we take h, = h/ for all 1 < i < r. On

the other hand, if we can find such elements hf, b}, ..., hl, then each h) has
the form )
hgl = sz]h_lj - Z Qi(ja)HjU
J=1 (j,o)el

for some pij, ¢i(jo) € k, and

pi(hy) = ?l(ZPz‘jh} - Z Qi(ja)Hja) - Zpijh;‘ + Z dijo) Hjo
=1 =1

(j,o)el (j.o)el
= Z Qi(ja)(Hja *Hjal),
(jo)el
where (j,0') = gi(j, o). Tt follows that
o) = Y ity (Hio = Hiot)

(o)l
for any t € Z, where (j,0') = ¢{(j, o). Note that T is a finite set, there exist
some ¢ € Z such that g} (j, o) = (j, o) for all (j, o) € I, and so that ty;(h)) = 0,

wi(h]) =0 for all ¢ and I. Thus ¢;(HNH’) =0 for any 1 <i < n.
Since

d; d;
& (H;) = |G| Z Eja(HiP):@ Z A(ip)(jo) = Cij
pEIrTG; pEirrG,
oGirrGj UEirrGj

and H; (i € Z) are linearly independent, it remains to show €;, i € T are linearly
independent modulo anng-(H%). Let

€:= Zujej € ann;,*(’Ha), w; € k.

JjeL

Then

0=c(H) =) nje;(Hi) =) cijh

jET jET

for all ¢ € Z, and so that

1 d;
c(Hip) =Y pje;(Hip) = @l > bijnj = @l > ciing =0
JET JET

jez
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for all (i, p) € I. Therefore,
€ € annp- (HC + 1) = anng- (H +b’) C anng« (H) = S.
It is equivalent to say

djpj

pi€; = Gl Z gjo € span{e;, — €, | p, p' € irrG;}

O'Eil‘l‘Gj

for each j € Z. It concludes that p; = 0 for all j € Z, and so that ¢; are linearly
independent in (H)*. The proof is completed. O
Remark 4.4. Since

Homy (h”, ¢) = Homy (h/b’, ¢),

for any lifting G of G, there exists a family of maps {¢; = v, : h/h’ — ¢ |
gi € 9} corresponding to it. Moreover, it is easy to see that the condition
©i(HNp") =0 is equivalent to ¥;((H +b')/b’) =

Now we can prove the main results of this section.

Proposition 4.5. There is a monomorphism g'(I') — (0/)€, and for the lifting
G of G corresponding to {@; : " — ¢ | 1 <1 < n} with ;(HNH") =0, we can
extend this monomorphism to the whole Lie algebra such that

o(l) — ¢
s also a monomorphism.

Proof. We set

> Hy,, E:= > E, F= Y F,

pEirrG; pEirrG; pEirrG,
for all i € Z. Then H;, E;, F; € (¢')¢ and

[H;,H;] =0,

[Es, ] = Z (Eip, Fjo| = 645 Z H;, = 6;;H;,
pEirrG, pE€irrG;
oEirrG

[Hian] = Z [ ips Bjo| = Z a(lp)(]U)EjG' = Cij Z Ejo = cijE
peirrG; pEirrG, o'elrrG
sEirrG) sEirnGy

Similarly, we have [H;, F;| = ¢;; F; for any i, j € Z. Note that adF;, and adE;
commute for any p, p’ € irrGi, we have

(adE;) Z@" I (adE;,)*

pEirrG,

for any positive integer n, where A takes though all the sequence A = (\,) peirra;

satisfying
2. de=m
peirrG;
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and the combinatorial number

n:( n )(nm )( n—p1— = PlierGi—1 )
A P1 P2 p\irrGi\

for any A = (p1,p2,...,pjinc,)- In particular, if n = 1 — ¢;5, then A, >
1 — agip)(jo) for some p € irrG; and so that

(adEi,) Ejo =0, (adE,)' ™1 E; = 0.
Similarly, (adF;)' =% F; = 0 for any 4,j € Z. Therefore, there exists a non-zero
homomorphism g'(I") — (g€,

Since (HG,{l‘%lqﬁ(Ei)},{qb(Hi)}) is_a realization of C' by Proposition 4.3,
there is an isomorphism h(I') — HE, H; — H;. Therefore we can get a
homomorphism g(I') — g¢ by compositing the homomorphisms ¢'(I") — (g"¢
and h(I') — HE. By [13, Proposition 1.7(b)], g(I') — g% and ¢'(T') — (¢)¢

are monomorphisms. (I

Now, we can identify g(I') with a subalgebra of a@. Following from Section
3.1, the map

he ZI—ZI, B h(B), WBi= Y. B

pEirrG;

a(s. 3 ez-p);(h(m,a)r

pEirrG;

satisfies

for all § = Z(i,p)efﬁipgip € ZI and h(Ag) = Ar by Proposition 3.12.

Proposition 4.6. The monomorphism g(I') — gE endows gE with an inte-
grable g(T")-module structure under the adjoint action of g(T').

Proof. Firstly, we identity the realization ([j(F), {&i}, {FZ}) with (’Ha, {ei},
{HZ}) For any non-zero 8 = Z(i p)efﬂipsip € A@ and H € HY, we have

Eip(H) = ﬁ Z Eip(H) ZEZ(H)

|G| pEirrG,
and
B(H) = Z Bip€ip(H) :Z ( Z ﬂip)gi(H) = Zh(ﬂ)lgt(fn = h(B)(H).
(i,p)ef i€ peirrGy i€T

Denote by Hg = {g € G | g(8) = B} and G a complete set of left coset
representatives of Hg in G. Then Hpg acts on the root space gg. Suppose that
x € gp satisfies g(x) = x for any g € Hg. Let

> g(@).

gEGg

¥(x) :
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It is easy to see that $(z) € g¢ and

[H,S(@)] = Y 9(8)(H)g(x) = h(B)(H) Y g(x) = h(B)(H)%(x)

geGp geGp

for all H € HO, since h(g(8)) = h(B) for any g € G. It follows that X(z) lies in
the weight space (g%)

of some X(x) with x € gg, 8 € Ay, we obtain that g€ is h(I')-diagonalisable.

n(g)- Note that each element in g can be written as a sum

Secondly, it is easy to see that the non-zero weights of gé must be roots of
T since h(A@) = Ap. On the other hand, every root of I' is also a weight of

ga under the adjoint action by the monomorphism g(T") — ga.
Finally, for any 8 € Ar, the set {3 + kg; | k € Z} N Ar is finite. Thus the
action of F; and F; are local nilpotent on g&. The proof is completed. (I

Following from the proof of Proposition 4.6, ( gé)a is spanned by the elements
Y(x) = deGg g(x), where z € gg satisfies g(x) = « for any g € Hpg, and
B e A@ satisfies h(8) = a. Thus, by the action of G on {E;,} and {F;,}, the
action of Hg on gg is identity and so that
8

dlm]k(g h(8) = 1

for any simple root 8. That is, dim]k(ga)a = 1 for all simple root o € Ar.

Moreover, we have the following claim.
Claim 4.7. dim]k(gé)a =1 for any real root o € Ar.
Proof. We consider the automorphism

Tip = exp(adF;,)exp(—adFE;,)exp(adFi,)

of g. Then 7,(g95) = 9r,,(8) and Ti,(H) = H — &,,(H)H;, for any H € b (see
[13, Lemma 3.8]). Note that 7;, and 7;,» commute for any p, p’ € irrG;, we let

gi = H Tip-
pE€irrG;
Then, for any H € ’Ha, we have
Si(H)=H — Z eip(H)H;, = H — ¢;(H) Z Hi, = H — ¢;(H)H;,
peirrG; pEirrG;

and S;(H) € HC. Note that?i and G’ commute on g/, it deduces that S; can
define an automorphism of g such that

Si((6D)a) = (6930

Thus, S; is an extension of the automorphism exp(adF;)exp(—adE;)exp(adF;)

of g(T).
Let a € Ar be a real root. By Lemma 3.11 and Proposition 3.12, there
exist a real root 8 € Az and w € Cq(W(Q)) such that h(8) = a, w(p) is a
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simple root and H,pp) = Hp. Let w = §i1§i2 §zr and W = Elg@ S,
then @W(gs) = gu(s) and hence gg is fixed by Hp. Finally, note that all these 3

are in the same G-orbit, we have dimy (g%), = 1. O

In particular, if @ is a finite union of Dynkin quivers, then g is a direct sum
of simple Lie algebras and all roots of I are real. By the claim, we have:

Corollary 4.8. If Q is a finite union of Dynkin quivers and G C Aut(kQ) is
finite abelian, then there is a Lie algebra isomorphism g(T') = g&.

5. Examples
In this section, we give two examples to elucidate our results.

Example 5.1. Let Q = (I, E) be the quiver:
o3

/@/

20«0 o

1W\ .

The action of G = (g) = Z/6Z on kQ given by

| €1 €2 €3 € « B 2
gler es ea 2 —B — —a
where e; is the idempotent element of k@) corresponding to vertex i, i €
{1,2,3,4}. Then the Cartan matrix of Q is

2 -1 -1 -1
-1 2 0 0
-1 0 2 0
-1 0 0 2

Let €1,e9,e3,e4 be all the simple roots of the symmetric Kac-Moody algebra
9(Q). We endow the root lattice ZI with a symmetric bilinear form (—, —)qg
via (€i,€5)0 = a;; and define reflection 7; : o — a — (a, €;)ge; for each vertex
i € I. Then, it is well-known that Weyl group W(Q) = (Z/27)* x Sy, and one
can check that Ag = +{e1,e2,¢3,64,61 + €2,61 +€3,61 + €4,61 + 2+ 3,61 +
€9+ €4,61 +E3+€E4,61+62+6€3+€4,261+62+6e3+ 54} is the root system of
8(Q). L
We get the generalized McKay quiver Q = (I, E) of (Q, G) as follows:

®(1,p3)

A = (ai;) =

®(1,p2)

a1 Qo
(1,p1)® - W (1,po)® —— >

(2100\ (2761
(0% Q.

®(1,p5) ®(1,p4)

where p; is the irreducible representation of G = (g) = Z/6Z defined by

7

a-g:gia’ a € p;,
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o; is the irreducible representation of (¢%) 2 Z/27Z defined by
b-g® =87,  beoy,

and ¢ is a primitive 6-th root of unity. As we have discussed in Section 3.2, by
the group isomorphism

p:G =G, () =xgs Xgi(9?) =Y,

we define the action of G on k@ * G by setting

g'(Ag) = €909’
for any ¢g' € G, \¢’ € kQ x G. This induces an action of G = (g) = Z/67Z on
]k@ given by

| ep e1 e e3 eq4 es €, € oy s o3 ay o5

gler ez es es es e € e Lar Loy &az o Los oo
where idempotent elements e;, e} are corresponding to the vertices (1, p;), (2, ;)
respectively, and &; € k satisfying &y&1---& = 1. One can check that the
generalized McKay quiver of (@, G) is just the quiver Q.

By the definition given in Section 2.3, we obtain the symmetrisable general-
ized Cartan matrix C corresponding to (@, G), i.e.,

c<_23 21).

Then the valued graph I' corresponding to C' is
G 1

I: le 2

Let 1,22 be all the simple roots of I'. Then the Weyl group
W() = Dg = (a,b | a®* = 1,0 = 1,ab=b""a)

and root system Ap = {g1,%2,21 + &2, 281 + &2, 381 + 2, 381 + 282 }. See Section
2.3 for detail.
We consider the map

he ZI—7I,  ha)i= Y. o
peirrG,

for any o = Z(i,p)efaipe(ip)Gf € ZI. The restriction of h : A@ — Ar is
surjective, this means that for any positive root 8 of I', there exists an inde-
composable @—representation X such that h(dimX) = 3. For example, we
consider the positive root 1 + 2 € Ap. Then, we have the following indecom-
posable Q-representation X (p3co):

k 0

A
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and obviously, A(dimX(,,,,)) = & + 2. Furthermore, for any 0 < 1 <5

< 9,
0<j<1landl#j mod 2, we define the @—representation Xpioy) = (Xip, Xa)
by

Y. — k, if (4,p) = (1,p0) or (2,0;); Y _ 1, ifa=q;
P 0, otherwise. « 0, otherwise.

Then, it is easy to see that the set of all indecomposable @—representations
with h(dimX) = &, + &2 is the set

{X (o |10<1<5, 0<j<landl#j mod 2},

and which is just the orbit of X, ,) under that action of G. Similarly, for
any positive real root S = h(a) € Ar, there are |H,| (up to isomorphism)
indecomposable Q-representations X such that A(dimX) = 3.

Example 5.2. Let Q = (I, E) be the quiver

!
1.4_041_%‘\0[2 1/.4_1_%\/
2
Ee ay 4/543 e o 4.1’/@3

and G = (a) x (b) 2 Z/2Z x Z/27Z. The action of G on kQ is given as follows

| €1 €9 €3 €4 €5 (A €9/ €3/ (S €5/

€5 €4 €3 €9 €1 €5/ €y €3/ €g/ €1/

ey (% e’ €y’ €5/ €1 €9 €3 €4 €5
| a1 @ a3 oy o] of of o
g a3 oz o oy oy oh o

b

where e; is the idempotent element of k@ corresponding to the vertex i. Take
7 ={1,2,3}. Then the generalized McKay quiver of (Q, G) is

of oy af o) o ax a3 o

(37 Pl)

where pg, p1 are the non-isomorphism irreducible representations of G35 = (a) =
Z/27. Reindexing the vertex set I = {1,2,(3,po), (3,p1)} by {1,2,3,4}, the
Cartan matrix of @ is
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The Lie algebra g := g(@) is generated by {x;,y;, h; | 1 <i < 4} satisfying the
relations

[hi, hj] =0, [z, y5] = dizhi;
[hi,xj]1= i, [hiayj]lz —aijy;; o
(adz;)'~%i (x;) =0, (ady;)'~%4 (y;) =0, 1 7.
In this case, the valued graph T of (@, G) is
o—— o—(2’ Ly .
1 2 3

with the Cartan Matrix
C = -1 2 -1

The Lie algebra g(T') is generated by {X;,Y;, H; | 1 < i < 3} satisfying the
relations

[H;,Hj] =0, [X;,Y;] = 0 Hy;
(1) [Hi, Xj] = cij X, [H;,Yj] = —ciY5;
(adX;)' =% (X;) =0, (adY;)'=¢(Y;) =0, i #J.

As the discussion in Section 3.2, we see that the vertices (3, po) and (3, p1) of
Q are in the same G-orbit. Therefore, the Lie algebra g is generated by

{07, ha | 1 <0 < 3},
yhere T =%, Y; = Yi, h; = h; for i = 1,2, and Ty = x5 + 24, Ys = Y3 + ya,
hs = hs + hy, satisfying the relations (1). Then, it is easy to see that the map
®: g(I) — g°
given by
O(X;) =7, (Y =7, OH)=h
is a Lie algebra isomorphism.
At last, we consider the following Dynkin quivers:

A2n+1(n2 1) Dn(n24)
> 2> ey n—1
/
n+1 12— = 2
s 2o e : n—1,
! . .
D : y E : )
1«—2/ T
~. l— 2 s 32 7.
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We equip the quivers As, 11, Dy and Eg with the quiver automorphism group
G = Z/27Z. For the quiver D'y, we consider its quiver automorphism group
G = Z/3Z. Then, we have

Q G r @ r Conclusion

Aonir | ZJ2Z | Bpii | Doia | Cpsr | 8(Bug1) = g(Dnyo)?/?
Dy | Z/2Z | Cuiy | Aspr| Bur | 9(Cur) = g(Agy 1)/%
D'y | Z/3Z| Gy | D'| Go 9(Ga) = g(D'4)%/%
Bs | zpz| B | EP | R 9(Fy) = g(Eg)%/%

where D’}" and EgP are the opposite quiver of D’y and Eg, respectively. B,
Cyn, F, and G2 mean the B-type, C-type, F-type and G-type Dynkin graph
respectively (see [7]).

We conclude that all the finite-dimensional simple Lie algebras correspond-
ing to the Dynkin graphs with multiple edges can be realized by the fix point
algebras of the simple Lie algebras corresponding to the Dynkin graphs without
multiple edges.
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