• Title/Summary/Keyword: quenching

Search Result 1,432, Processing Time 0.031 seconds

Effects of Crud on reflood heat transfer in Nuclear Power Plant (핵연료 크러드가 원전 재관수 열전달에 미치는 영향)

  • Yoo, Jin;Kim, Byoung Jae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.5
    • /
    • pp.554-560
    • /
    • 2021
  • CRUD (chalk river unidentified deposits) is a porous material deposited on the surface of nuclear fuel during nuclear power plant operation. The CRUD is composed of metal oxides, such as iron, nickel, and chromium. It is essential to investigate the effects of the CRUD layer on the wall heat transfer between the nuclear fuel surface and the coolant in the event of a nuclear accident. CRUD only negatively affects the temperature of the nuclear fuel due to heat resistance because the effects of the CRUD layer on two-phase boiling heat transfer are not considered. In this study, the physical property models for the porous CRUD layer were developed and implemented into the SPACE code. The effects of boiling heat transfer models on the peak cladding temperature and quenching were investigated by simulating a reflood experiment. The calculation results showed some positive effects of the CRUD layer.

Behavior of Macrosegregation and Precipitation Developed in Semi-continuously Cast Large Bloom (반연속주조된 대형 블룸에서 발생하는 거시편석 및 석출물 거동)

  • Kim, Hyeju;Lee, Hyoungrok;Kim, Kyeong-A;Lee, Joodong;Oh, Kyung-sik;Kwon, Sang-Hum;Kim, Donggyu
    • Journal of Korea Foundry Society
    • /
    • v.39 no.1
    • /
    • pp.7-13
    • /
    • 2019
  • Few studies of large blooms over 700 mm thick among those used for the forging of raw materials have been reported. The cooling rate difference between the surface and the center of a large bloom is large, and the degradation of the mechanical properties is likely in cases involving excessively coarse precipitates resulted from the slow cooling rate of a large bloom after casting. Therefore, a schematic investigation of the growth behaviors of precipitates while varying their locations in blooms is necessary. The dissolution behaviors of precipitates were investigated by simulating a reheating process during which the bloom is heated to a high temperature. The segregation behavior of the as-cast large bloom was also investigated. Reheating specimens were obtained after an isothermal heat treatment at $1150^{\circ}C$ with various holding times to simulate the reheating process, with the samples undergoing a subsequent water quenching step. The precipitates were extracted using an electrolytic extractor and a particle size analysis was conducted with the aid of SEM, EDS, and TEM. In the present work, Al oxide, MnS and Nb carbide were mainly observed.

Fabrication of High Density BZN-PVDF Composite Film by Aerosol Deposition for High Energy Storage Properties (상온분말분사공정을 이용한 고밀도 폴리머-세라믹 혼합 코팅층 제조 및 에너지 저장 특성 향상)

  • Lim, Ji-Ho;Kim, Jin-Woo;Lee, Seung Hee;Park, Chun-kil;Ryu, Jungho;Choi, Doo hyun;Jeong, Dae-Yong
    • Korean Journal of Materials Research
    • /
    • v.29 no.3
    • /
    • pp.175-182
    • /
    • 2019
  • This study examines paraelectric $Bi_{1.5}Zn_{1.0}Nb_{1.5}O_7$ (BZN), which has no hysteresis and high dielectric strength, for energy density capacitor applications. To increase the breakdown dielectric strength of the BZN film further, poly(vinylidene fluoride) BZN-PVDF composite film is fabricated by aerosol deposition. The volume ratio of each composition is calculated using dielectric constant of each composition, and we find that it was 12:88 vol% (BZN:PVDF). To modulate the structure and dielectric properties of the ferroelectric polymer PVDF, the composite film is heat-treated at $200^{\circ}C$ for 5 and 30 minutes following quenching. The amount of ${\alpha}-phase$ in the PVDF increases with an increasing annealing time, which in turn decreases the dielectric constant and dielectric loss. The breakdown dielectric strength of the BZN film increases by mixing PVDF. However, the breakdown field decreases with an increasing annealing time. The BZN-PVDF composite film has the energy density of $4.9J/cm^3$, which is larger than that of the pure BZN film of $3.6J/cm^3$.

Synthesis and Optical Properties of BaSiO3:RE3+ (RE = Sm, Eu) Phosphors (BaSiO3:RE3+ (RE = Sm, Eu) 형광체의 합성과 광학 특성)

  • Cho, Shinho
    • Korean Journal of Materials Research
    • /
    • v.29 no.6
    • /
    • pp.356-362
    • /
    • 2019
  • $BaSiO_3:RE^{3+}$ (RE = Sm or Eu) phosphor powders with different concentrations of activator ions are synthesized using the solid-state reaction method. The effects of the concentration of activator ions on the structural, photoluminescent, and morphological properties of the barium silicate phosphors are investigated. X-ray diffraction data reveals that the crystal structure of all the phosphors, regardless of the type and the concentration of the activator ions, is an orthorhombic system with a main (111) diffraction peak. The grain particles agglomerate together to form larger clusters with increasing concentrations of activator ions. The emission spectra of the $Sm^{3+}$-doped $BaSiO_3$ phosphors under excitation at 406 nm consist of an intense orange band at 604 nm and three weak bands centered at 567, 651, and 711 nm, respectively. As the concentration of $Sm^{3+}$ increases from 1 to 5 mol%, the intensities of all the emission bands gradually increase, reach maxima at 5 mol% of $Sm^{3+}$ ions, and then decrease significantly with further increases in the $Sm^{3+}$ concentration due to the concentration quenching phenomenon. For the $Eu^{3+}$-doped $BaSiO_3$ phosphors, a strong red emission band at 621 nm and several weak bands are observed. The optimal orange and red light emissions of the $BaSiO_3$ phosphors are obtained when the concentrations of $Sm^{3+}$ and $Eu^{3+}$ ions are 5 mol% and 15 mol%, respectively.

Neuroprotective Effect of Astersaponin I against Parkinson's Disease through Autophagy Induction

  • Zhang, Lijun;Park, Jeoung Yun;Zhao, Dong;Kwon, Hak Cheol;Yang, Hyun Ok
    • Biomolecules & Therapeutics
    • /
    • v.29 no.6
    • /
    • pp.615-629
    • /
    • 2021
  • An active compound, triterpene saponin, astersaponin I (AKNS-2) was isolated from Aster koraiensis Nakai (AKNS) and the autophagy activation and neuroprotective effect was investigated on in vitro and in vivo Parkinson's disease (PD) models. The autophagy-regulating effect of AKNS-2 was monitored by analyzing the expression of autophagy-related protein markers in SH-SY5Y cells using Western blot and fluorescent protein quenching assays. The neuroprotection of AKNS-2 was tested by using a 1-methyl-4-phenyl-2,3-dihydropyridium ion (MPP+)-induced in vitro PD model in SH-SY5Y cells and an MPTP-induced in vivo PD model in mice. The compound-treated SH-SY5Y cells not only showed enhanced microtubule-associated protein 1A/1B-light chain 3-II (LC3-II) and decreased sequestosome 1 (p62) expression but also showed increased phosphorylated extracellular signal-regulated kinases (p-Erk), phosphorylated AMP-activated protein kinase (p-AMPK) and phosphorylated unc-51-like kinase (p-ULK) and decreased phosphorylated mammalian target of rapamycin (p-mTOR) expression. AKNS-2-activated autophagy could be inhibited by the Erk inhibitor U0126 and by AMPK siRNA. In the MPP+-induced in vitro PD model, AKNS-2 reversed the reduced cell viability and tyrosine hydroxylase (TH) levels and reduced the induced α-synuclein level. In an MPTP-induced in vivo PD model, AKNS-2 improved mice behavioral performance, and it restored dopamine synthesis and TH and α-synuclein expression in mouse brain tissues. Consistently, AKNS-2 also modulated the expressions of autophagy related markers in mouse brain tissue. Thus, AKNS-2 upregulates autophagy by activating the Erk/mTOR and AMPK/mTOR pathways. AKNS-2 exerts its neuroprotective effect through autophagy activation and may serve as a potential candidate for PD therapy.

Effect of Cryoprotectants on the Cryopreservation of Manila Clam, Ruditapes philippinarum Embryo (바지락 발생배의 냉동보존에 관한 보존액의 효과)

  • Kang, Kyoung Ho
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.1
    • /
    • pp.128-135
    • /
    • 2021
  • The possibility and effectiveness of cryopreservation was determined to assess survival rates and improve stock management of thawed embryos of Manila clam, Ruditapes philippinarum. The ideal freezing rates were designed and tested to allow cryoprotectants to equilibrate across the membrane during freezing. Survival rates ranging from 0 to 64.3% were obtained using a stepwise freezing protocol compared with 82.3% control rates. Embryos of Ruditapes philippinarum were equilibrated in 2 CPAs plus sea water for 10 min at 25℃ and then cooled at -1℃/min from 20℃ to -12℃. Straws containing more than 100 embryos were held at 12℃ for 5 min allowing equilibration after seeding and slowly cooled at 2℃/min. to -35℃ for 30 min for equilibration before quenching in liquid nitrogen. Dimethyl sulfoxide (DMSO) is the best cryoprotectant indicated for embryos of R. philippinarum with a survival rate of 64.3±3.28% in the presence of 2.0 M DMSO.

Effect of Heat Treatment on Microstructure, Mechanical Property and Corrosion Behavior of STS 440C Martensitic Stainless Steel (STS 440C 마르텐사이트계 스테인리스 강의 열처리에 따른 미세조직, 기계적 특성 및 부식 거동)

  • Kim, Mingu;Lee, Kwangmin
    • Korean Journal of Materials Research
    • /
    • v.31 no.1
    • /
    • pp.29-37
    • /
    • 2021
  • Martensitic stainless steel is commonly used in the medical implant instrument. The alloy has drawbacks in terms of strength and wear properties when applied to instruments with sharp parts. 440C STS alloy, with improved durability, is an alternative to replace 420 J2 STS. In the present study, the carbide precipitation, and mechanical and corrosion properties of STS 440C alloy are studied as a function of different heat treatments. The STS 440C alloy is first austenitized at different temperatures; this is immediately followed by oil quenching and sub-zero treatment. After sub-zero treatment, the alloy is tempered at low temperatures. The microstructures of the heat treated STS 440C alloy consist of martensite and retained austenite and carbides. Using EDX and SADP with a TEM, the precipitated carbides are identified as a Cr23C6 carbide with a size of 1 to 2 ㎛. The hardness of STS 440C alloy is improved by austenitization at 1,100 ℃ with sub-zero treatment and tempering at 200 ℃. The values of Ecorr and Icorr for STS 440C increase with austenitization temperature. Results can be explained by the dissolution of Cr-carbide and the increase in the retained austenite. Sub-zero treatment followed by tempering shows a little difference in the properties of potentiodynamic polarizations.

Experimental investigation of two-phase flow and wall heat transfer during reflood of single rod heater (단일 가열봉의 재관수 시 2상유동 및 벽면 열전달에 관한 실험적 연구)

  • Park, Youngjae;Kim, Hyungdae
    • Journal of the Korean Society of Visualization
    • /
    • v.18 no.3
    • /
    • pp.23-34
    • /
    • 2020
  • Two-phase flow and heat transfer characteristics during the reflood phase of a single heated rod in the KHU reflood experimental facility were examined. Two-phase flow behavior during the reflooding experiment was carefully visualized along with transient temperature measurement at a point inside the heated rod. By numerically solving one-dimensional inverse heat conduction equation using the measured temperature data, time-resolved wall heat flux and temperature histories at the interface of the heated rod and coolant were obtained. Once water coolant was injected into the test section from the bottom to reflood the heated rod of >700℃, vast vapor bubbles and droplets were generated near the reflood front and dispersed flow film boiling consisted of continuous vapor flow and tiny liquid droplets appeared in the upper part. Following the dispersed flow film boiling, inverted annular/slug/churn flow film boiling regimes were sequentially observed and the wall temperature gradually decreased. When so-called minimum film boiling temperature reached, the stable vapor film between the heated rod and coolant was suddenly collapsed, resulting in the quenching transition from film boiling into nucleate boiling. The moving speed of the quench front measured in the present study showed a good agreement with prediction by a correlation in literature. The obtained results revealed that typical two-phase flow and heat transfer behaviors during the reflood phase of overheated fuel rods in light water nuclear reactors are well reproduced in the KHU facility. Thus, the verified reflood experimental facility can be used to explore the effects of other affecting parameters, such as CRUD, on the reflood heat transfer behaviors in practical nuclear reactors.

Optically Managing Thermal Energy in High-power Yb-doped Fiber Lasers and Amplifiers: A Brief Review

  • Yu, Nanjie;Ballato, John;Digonnet, Michel J.F.;Dragic, Peter D.
    • Current Optics and Photonics
    • /
    • v.6 no.6
    • /
    • pp.521-549
    • /
    • 2022
  • Fiber lasers have made remarkable progress over the past three decades, and they now serve far-reaching applications and have even become indispensable in many technology sectors. As there is an insatiable appetite for improved performance, whether relating to enhanced spatio-temporal stability, spectral and noise characteristics, or ever-higher power and brightness, thermal management in these systems becomes increasingly critical. Active convective cooling, such as through flowing water, while highly effective, has its own set of drawbacks and limitations. To overcome them, other synergistic approaches are being adopted that mitigate the sources of heating at their roots, including the quantum defect, concentration quenching, and impurity absorption. Here, these optical methods for thermal management are briefly reviewed and discussed. Their main philosophy is to carefully select both the lasing and pumping wavelengths to moderate, and sometimes reverse, the amount of heat that is generated inside the laser gain medium. First, the sources of heating in fiber lasers are discussed and placed in the context of modern fiber fabrication methods. Next, common methods to measure the temperature of active fibers during laser operation are outlined. Approaches to reduce the quantum defect, including tandem-pumped and short-wavelength lasers, are then reviewed. Finally, newer approaches that annihilate phonons and actually cool the fiber laser below ambient, including radiation-balanced and excitation-balanced fiber lasers, are examined. These solutions, and others yet undetermined, especially the latter, may prove to be a driving force behind a next generation of ultra-high-power and/or ultra-stable laser systems.

Synthesis of Novel (Be,Mg,Ca,Sr,Zn,Ni)3O4 High Entropy Oxide with Characterization of Structural and Functional Properties and Electrochemical Applications

  • Arshad, Javeria;Janjua, Naveed Kausar;Raza, Rizwan
    • Journal of Electrochemical Science and Technology
    • /
    • v.12 no.1
    • /
    • pp.112-125
    • /
    • 2021
  • The new emerging "High entropy materials" attract the attention of the scientific society because of their simpler structure and spectacular applications in many fields. A novel nanocrystalline high entropy (Be,Mg,Ca,Sr,Zn,Ni)3O4 oxide has been successfully synthesized through mechanochemical treatment followed by sintering and air quenching. The present research work focuses on the possibility of single-phase formation in the aforementioned high entropy oxide despite the great difference in the atomic sizes of reactant alkaline earth and 3d transition metal oxides. Structural properties of (Be,Mg,Ca,Sr,Zn,Ni)3O4 high entropy oxide were explored by confirmation of its single-phase Fd-3m spinel structure by x-ray diffraction (XRD). Further, nanocrystalline nature and morphology were analyzed by scanning electron microscopy (SEM). Among thermal properties, thermogravimetric analysis (TGA) revealed that the (Be,Mg,Ca,Sr,Zn,Ni)3O4 high entropy oxide is thermally stable up to a temperature of 1200℃. Whereas phase evolution in (Be,Mg,Ca,Sr,Zn,Ni)3O4 high entropy oxide before and after sintering was analyzed through differential scanning calorimetry (DSC). Electrochemical studies of (Be,Mg,Ca,Sr,Zn,Ni)3O4 high entropy oxide consists of a comparison of thermodynamic and kinetic parameters of water and hydrazine hydrate oxidation. Values of activation energy for water oxidation (9.31 kJ mol-1) and hydrazine hydrate oxidation (13.93 kJ mol-1) reveal that (Be,Mg,Ca,Sr,Zn,Ni)3O4 high entropy oxide is catalytically more active towards water oxidation as compared to that of hydrazine hydrate oxidation. Electrochemical impedance spectroscopy is also performed to get insight into the kinetics of both types of reactions.