Browse > Article
http://dx.doi.org/10.3740/MRSK.2019.29.3.175

Fabrication of High Density BZN-PVDF Composite Film by Aerosol Deposition for High Energy Storage Properties  

Lim, Ji-Ho (Department of Materials Science and Engineering, Inha University)
Kim, Jin-Woo (Department of Materials Science and Engineering, Inha University)
Lee, Seung Hee (Department of Materials Science and Engineering, Inha University)
Park, Chun-kil (Department of Materials Science and Engineering, Inha University)
Ryu, Jungho (School of Materials Science & Engineering, Yeungnam University)
Choi, Doo hyun (Agency for Defense Development)
Jeong, Dae-Yong (Department of Materials Science and Engineering, Inha University)
Publication Information
Korean Journal of Materials Research / v.29, no.3, 2019 , pp. 175-182 More about this Journal
Abstract
This study examines paraelectric $Bi_{1.5}Zn_{1.0}Nb_{1.5}O_7$ (BZN), which has no hysteresis and high dielectric strength, for energy density capacitor applications. To increase the breakdown dielectric strength of the BZN film further, poly(vinylidene fluoride) BZN-PVDF composite film is fabricated by aerosol deposition. The volume ratio of each composition is calculated using dielectric constant of each composition, and we find that it was 12:88 vol% (BZN:PVDF). To modulate the structure and dielectric properties of the ferroelectric polymer PVDF, the composite film is heat-treated at $200^{\circ}C$ for 5 and 30 minutes following quenching. The amount of ${\alpha}-phase$ in the PVDF increases with an increasing annealing time, which in turn decreases the dielectric constant and dielectric loss. The breakdown dielectric strength of the BZN film increases by mixing PVDF. However, the breakdown field decreases with an increasing annealing time. The BZN-PVDF composite film has the energy density of $4.9J/cm^3$, which is larger than that of the pure BZN film of $3.6J/cm^3$.
Keywords
BZN; poly(vinyliden-fluoride); aerosol deposition; energy density; composite film;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 J. Zhang, X. Du, C. Whang and K. Ren, J. Phys. D: Appl. Phys., 51, 255306 (2018).   DOI
2 J.-H. Lim, C.-K. Park, S. H. Cho, J.-W. Kim, H. S. Kim and D.-Y. Jeong, Ceram. Int., 44, 10829 (2018).   DOI
3 J.-H. Lim, C.-K. Park, Y.-S. Lee, Y.-M. Kong, K. H. Kang, H. S. Kim and D.-Y. Jeong, Korean J. Met. Mater., 54, 164 (2016).   DOI
4 C.-W. Baek, G. Han, B.-D. Hahn, W.-H. Yoon, J.-J. Choi, D.-S. Park, J. Ryu and D.-Y. Jeong, Korean J. Mater. Res., 21, 277 (2011).   DOI
5 C.-K. Park, D. K. Kang, S. H. Lee, Y.-M. Kong and D.-Y. Jeong, J. Korean Inst. Electr. Electron. Mater. Eng., 30, 541 (2017).   DOI
6 M. Lebedev and J. Akedo, Jpn. J. Appl. Phys., 41, 6669 (2002).   DOI
7 J.-J. Choi, J.-H. Jang, D.-S. Park, B.-D. Hahn, W.-H. Yoon and C. Park, Solid State Phenom., 124, 169 (2007).   DOI
8 H. Hatono, T. Ito and A. Matsumura, Jpn. J. Appl. Phys., 46, 6915 (2007).   DOI
9 K. M. Elizabeth and T.-M. Susan, J. Am. Ceram. Soc., 98, 1223 (2015).   DOI
10 M. Dinulovic and B. Rasuo, FME Transactions, 37, 117 (2009).
11 C.-K. Park, S. H. Lee, J.-H. Lim, J. Ryu, D. H. Choi and D.-Y. Jeong, Ceram. Int., 44, 20111 (2018).   DOI
12 J.-W. Kim, J.-H. Lim, S.-H. Kim, C. Y. Koo, J. Ryu and D.-Y. Jeong, J. Ceram. Process. Res., 19, 243 (2018).   DOI
13 B. Chu, X. Zhou, K. Ren, B. Neese, N. Lin, Q. Wang, F. Bauer and Q. M. Zhang, Science, 313, 334 (2006).   DOI
14 T. Yamada, T. Ueda and T. Kitayama, J. Appl. Phys. Lett., 76, 4328 (1982).
15 Z.-M Dang, Z.-M. Dang, D. Xie and C.-Y. Shi, Appl. Phys. Lett., 91, 222902 (2007).   DOI
16 Y. Bai, Z.-Y. Cheng, V. Bharti, H. S. Xu and Q. M. Zhang, Appl. Phys. Lett., 76, 3804 (2000).   DOI
17 Aarti S. Bhatt, D. Krishna Bhat and M. S. Santosh, J. Appl. Polym. Sci., 119, 968 (2011).   DOI
18 A. Gupta and R. Chatterjee, J. Appl. Phys., 106, 024110 (2009).   DOI