Browse > Article
http://dx.doi.org/10.4062/biomolther.2021.004

Neuroprotective Effect of Astersaponin I against Parkinson's Disease through Autophagy Induction  

Zhang, Lijun (Natural Product Research Center, Korea Institute of Science and Technology)
Park, Jeoung Yun (Natural Product Research Center, Korea Institute of Science and Technology)
Zhao, Dong (Natural Product Research Center, Korea Institute of Science and Technology)
Kwon, Hak Cheol (Natural Product Informatics Research Center, Korea Institute of Science and Technology)
Yang, Hyun Ok (Natural Product Research Center, Korea Institute of Science and Technology)
Publication Information
Biomolecules & Therapeutics / v.29, no.6, 2021 , pp. 615-629 More about this Journal
Abstract
An active compound, triterpene saponin, astersaponin I (AKNS-2) was isolated from Aster koraiensis Nakai (AKNS) and the autophagy activation and neuroprotective effect was investigated on in vitro and in vivo Parkinson's disease (PD) models. The autophagy-regulating effect of AKNS-2 was monitored by analyzing the expression of autophagy-related protein markers in SH-SY5Y cells using Western blot and fluorescent protein quenching assays. The neuroprotection of AKNS-2 was tested by using a 1-methyl-4-phenyl-2,3-dihydropyridium ion (MPP+)-induced in vitro PD model in SH-SY5Y cells and an MPTP-induced in vivo PD model in mice. The compound-treated SH-SY5Y cells not only showed enhanced microtubule-associated protein 1A/1B-light chain 3-II (LC3-II) and decreased sequestosome 1 (p62) expression but also showed increased phosphorylated extracellular signal-regulated kinases (p-Erk), phosphorylated AMP-activated protein kinase (p-AMPK) and phosphorylated unc-51-like kinase (p-ULK) and decreased phosphorylated mammalian target of rapamycin (p-mTOR) expression. AKNS-2-activated autophagy could be inhibited by the Erk inhibitor U0126 and by AMPK siRNA. In the MPP+-induced in vitro PD model, AKNS-2 reversed the reduced cell viability and tyrosine hydroxylase (TH) levels and reduced the induced α-synuclein level. In an MPTP-induced in vivo PD model, AKNS-2 improved mice behavioral performance, and it restored dopamine synthesis and TH and α-synuclein expression in mouse brain tissues. Consistently, AKNS-2 also modulated the expressions of autophagy related markers in mouse brain tissue. Thus, AKNS-2 upregulates autophagy by activating the Erk/mTOR and AMPK/mTOR pathways. AKNS-2 exerts its neuroprotective effect through autophagy activation and may serve as a potential candidate for PD therapy.
Keywords
Autophagy; Parkinson's disease; Neuroprotection; Tyrosine hydroxylase; Motor symptoms;
Citations & Related Records
연도 인용수 순위
  • Reference
1 He, C. and Klionsky, D. J. (2009) Regulation mechanisms and signaling pathways of autophagy. Annu. Rev. Genet. 43, 67-93.   DOI
2 Hyun, S.-W., Kim, J., Jo, K., Kim, J. S. and Kim, C. S. (2018) Aster koraiensis extract improves impaired skin wound healing during hyperglycemia. Integr. Med. Res. 7, 351-357.   DOI
3 Taylor, T. N., Greene, J. G. and Miller, G. W. (2010) Behavioral phenotyping of mouse models of Parkinson's disease. Behav. Brain Res. 211, 1-10.   DOI
4 Wang, J., Whiteman, M. W., Lian, H., Wang, G., Singh, A., Huang, D. and Denmark, T. (2009) A non-canonical MEK/ERK signaling pathway regulates autophagy via regulating Beclin 1. J. Biol. Chem. 284, 21412-21424.   DOI
5 Wu, Y. T., Tan, H. L., Shui, G., Bauvy, C., Huang, Q., Wenk, M. R., Ong, C. N., Codogno, P. and Shen, H. M. (2010) Dual role of 3-methyladenine in modulation of autophagy via different temporal patterns of inhibition on class I and III phosphoinositide 3-kinase. J. Biol. Chem. 285, 10850-10861.   DOI
6 Yoshii, S. R. and Mizushima, N. (2017) Monitoring and measuring autophagy. Int. J. Mol. Sci. 18, 1865.   DOI
7 Zhang, X. J., Chen, S., Huang, K. X. and Le, W. (2013) Why should autophagic flux be assessed? Acta Pharmacol. Sin. 34, 595-599.   DOI
8 Vogiatzi, T., Xilouri, M., Vekrellis, K. and Stefanis, L. (2008) Wild type alpha-synuclein is degraded by chaperone-mediated autophagy and macroautophagy in neuronal cells. J. Biol. Chem. 283, 23542-23556.   DOI
9 Janhom, P. and Dharmasaroja, P. (2015) Neuroprotective effects of alpha-mangostin on MPP(+)-induced apoptotic cell death in neuroblastoma SH-SY5Y cells. J. Toxicol. 2015, 919058.
10 Sarkar, S. (2013) Regulation of autophagy by mTOR-dependent and mTOR-independent pathways: autophagy dysfunction in neurodegenerative diseases and therapeutic application of autophagy enhancers. Biochem. Soc. Trans. 41, 1103-1130.   DOI
11 Chu, Y., Dodiya, H., Aebischer, P., Olanow, C. W. and Kordower, J. H. (2009) Alterations in lysosomal and proteasomal markers in Parkinson's disease: relationship to alpha-synuclein inclusions. Neurobiol. Dis. 35, 385-398.   DOI
12 Dauer, W. and Przedborski, S. (2003) Parkinson's disease: mechanisms and models. Neuron 39, 889-909.   DOI
13 Hu, X., Song, Q., Li, X., Li, D. D., Zhang, Q., Meng, W. H. and Zhao, Q. C. (2017a) Neuroprotective effects of Kukoamine A on neurotoxin-induced Parkinson's model through apoptosis inhibition and autophagy enhancement. Neuropharmacology 117, 352-363.   DOI
14 Yang, Y. H., Chen, K., Li, B., Chen, J. W., Zheng, X. F., Wang, Y. R., Jiang, S. D. and Jiang, L. S. (2013) Estradiol inhibits osteoblast apoptosis via promotion of autophagy through the ER-ERK-mTOR pathway. Apoptosis 18, 1363-1375.   DOI
15 Klaidman, L .K., Adams, J. D., Jr., Leung, A. C., Kim, S. S. and Cadenas, E. (1993) Redox cycling of MPP+: evidence for a new mechanism involving hydride transfer with xanthine oxidase, aldehyde dehydrogenase, and lipoamide dehydrogenase. Free Radic. Biol. Med. 15, 169-179.   DOI
16 Jung, C. H., Jun, C. B., Ro, S. H., Kim, Y. M., Otto, N. M., Cao, J., Kundu, M. and Kim, D. H. (2009) ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery. Mol. Biol. Cell 20, 1992-2003.   DOI
17 Mythri, R. B., Harish, G. and Bharath, M. M. (2012) Therapeutic potential of natural products in Parkinson's disease. Recent Pat. Endocr. Metab. Immune Drug Discov. 6, 181-200.   DOI
18 Ramsay, R. R. and Singer, T. P. (1986) Energy-dependent uptake of Nmethyl-4-phenylpyridinium, the neurotoxic metabolite of 1-methyl4-phenyl-1,2,3,6-tetrahydropyridine, by mitochondria. J. Biol. Chem. 261, 7585-7587.   DOI
19 Bjorkoy, G., Lamark, T., Pankiv, S., Overvatn, A., Brech, A. and Johansenet, T. (2009) Monitoring autophagic degradation of p62/SQSTM1. Methods Enzymol. 452, 181-197.   DOI
20 Choi, D. Y., Lee, M. K. and Hong, J. T. (2013) Lack of CCR5 modifies glial phenotypes and population of the nigral dopaminergic neurons, but not MPTP-induced dopaminergic neurodegeneration. Neurobiol. Dis. 49, 159-168.   DOI
21 Conway, K. A., Lee, S. J., Rochet, J. C., Ding, T. T., Harper, J. D., Williamson, R. E. and Lansbury, P. T., Jr. (2000) Accelerated oligomerization by Parkinson's disease linked alpha-synuclein mutants. Ann. N. Y. Acad. Sci. 920, 42-45.   DOI
22 Ghosh, R., Gilda, J. E. and Gomes, A. V. (2014) The necessity of and strategies for improving confidence in the accuracy of western blots. Expert Rev. Proteomics 11, 549-560.   DOI
23 Prabakaran, M., Kim, S. H., Mugila, N., Hemapriya, V., Parameswari, K., Chitra, S. and Chunga, I. M. (2017) Aster koraiensis as nontoxic corrosion inhibitor for mild steel in sulfuric acid. J. Ind. Eng. Chem. 52, 235-242.   DOI
24 Davie, C. A. (2008) A review of Parkinson's disease. Br. Med. Bull. 86, 109-127.   DOI
25 Dehay, B., Bove, J., Rodriguez-Muela, N., Perier, C., Recasens, A., Boya, P. and Vila, M. (2010) Pathogenic lysosomal depletion in Parkinson's disease. J. Neurosci. 30, 12535-12544.   DOI
26 Egan, D. F., Shackelford, D. B., Mihaylova, M. M., Gelino, S. R., Kohnz, R. A., Mair, W., Vasquez, D. S., Joshi, A., Gwinn, D. M., Taylor, R., Asara, J. M., Fitzpatrick, J., Dillin, A., Viollet, B., Kundu, M., Hansen, M. and Shaw, R. J. (2011) Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science 331, 456-461.   DOI
27 Ganley, I. G., Lam du, H., Wang, J., Ding, X., Chen, S. and Jiang, X. (2009) ULK1.ATG13.FIP200 complex mediates mTOR signaling and is essential for autophagy. J. Biol. Chem. 284, 12297-12305.   DOI
28 Glick, D., Barth, S. and Macleod, K. F. (2010) Autophagy: cellular and molecular mechanisms. J. Pathol. 221, 3-12.   DOI
29 Kostrzewa, R. M. (2014) Handbook of Neurotoxicity. Springer, New York.
30 Kim, J., Kundu, M., Viollet, B. and Guan, K. L. (2011) AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat. Cell Biol. 13, 132-141.   DOI
31 Kwon, J., Ko, K., Zhang, L., Zhao, D., Yang, H. O. and Kwon, H. C. (2019) An autophagy inducing triterpene saponin derived from Aster koraiensis. Molecules 24, 4489.   DOI
32 Mallajosyula, J. K., Kaur, D., Chinta, S. J., Rajagopalan, S., Rane, A., Nicholls, D. G., Di Monte, D. A., Macarthur, H. and Andersen, J. K. (2008) MAO-B elevation in mouse brain astrocytes results in Parkinson's pathology. PLoS ONE 3, e1616.   DOI
33 Meley, D., Bauvy, C., Houben-Weerts, J. H. P. M., Dubbelhuis, P. F., Helmond, M. T. J., Codogno, P. and Meijer, A. J. (2006) AMP-activated protein kinase and the regulation of autophagic proteolysis. J. Biol. Chem. 281, 34870-34879.   DOI
34 Nashatizadeh, M. M., Lyons, K. E. and Pahwa, R. (2009) A review of ropinirole prolonged release in Parkinson's disease. Clin. Interv. Aging 4, 179-186.
35 Inoki, K., Zhu, T. and Guan, K. L. (2003) TSC2 mediates cellular energy response to control cell growth and survival. Cell 115, 577-590.   DOI
36 Zhu, W., Gao, Y., Wan, J., Lan, X., Han, X., Zhu, S., Zang, W., Chen, X., Ziai, W., Hanley, D. F., Russo, S. J., Jorge, R. E. and Wang, J. (2018) Changes in motor function, cognition, and emotion-related behavior after right hemispheric intracerebral hemorrhage in various brain regions of mouse. Brain Behav. Immun. 69, 568-581.   DOI
37 Pattingre, S., Bauvy, C. and Codogno, P. (2003) Amino acids interfere with the ERK1/2-dependent control of macroautophagy by controlling the activation of Raf-1 in human colon cancer HT-29 cells. J. Biol. Chem. 278, 16667-16674.   DOI
38 Poewe, W., Seppi, K., Tanner, C. M., Halliday, G. M., Brundin, P., Volkmann, J., Schrag, A. E. and Lang, A. E. (2017) Parkinson disease. Nat. Rev. Dis. Primers 3, 17013.   DOI
39 Ransom, B. R., Kunis, D. M., Irwin, I. and Langston, J. W. (1987) Astrocytes convert the parkinsonism inducing neurotoxin, MPTP, to its active metabolite, MPP+. Neurosci. Lett. 75, 323-328.   DOI
40 Hu, X. X., Shi, S., Wang, H., Yu, X., Wang, Q., Jiang, S., Ju, D., Ye, L. and Feng, M. (2017b) Blocking autophagy improves the anti-tumor activity of afatinib in lung adenocarcinoma with activating EGFR mutations in vitro and in vivo. Sci. Rep. 7, 4559.   DOI
41 Ito, S., Koshikawa, N., Mochizuki, S. and Takenaga, K. (2007) 3-Methyladenine suppresses cell migration and invasion of HT1080 fibrosarcoma cells through inhibiting phosphoinositide 3-kinases independently of autophagy inhibition. Int. J. Oncol. 31, 261-268.
42 Moscat, J. and Diaz-Meco, M. T. (2009) p62 at the crossroads of autophagy, apoptosis, and cancer. Cell 137, 1001-1004.   DOI
43 Tabrez, S., Jabir, N. R., Shakil, S., Greig, N. H., Alam, Q., Abuzenadah, A. M., Damanhouri, G. A. and Kamal, M. A. (2012) A synopsis on the role of tyrosine hydroxylase in Parkinson's disease. CNS Neurol. Disord. Drug Targets 11, 395-409.   DOI
44 Kim, J., Lee, Y. M., Jung, W., Park, S. B., Kim, C. S. and Kim, J. S. (2018) Aster koraiensis extract and chlorogenic acid inhibit retinal angiogenesis in a mouse model of oxygen-induced retinopathy. Evid. Based Complement. Alternat. Med. 2018, 6402650.
45 Kupsch, A., Sautter, J., Gotz, M. E., Breithaupt, W., Schwarz, J., Youdim, M. B., Riederer, P., Gerlach, M. and Oertel, W. H. (2001) Monoamine oxidase-inhibition and MPTP-induced neurotoxicity in the non-human primate: comparison of rasagiline (TVP 1012) with selegiline. J. Neural Transm. (Vienna) 108, 985-1009.   DOI
46 Liang, J. Q., Wang, L., He, J. C. and Hua, X. (2016) Verbascoside promotes the regeneration of tyrosine hydroxylase-immunoreactive neurons in the substantia nigra. Neural Regen. Res. 11, 101-106.   DOI
47 Le, W. (2020) Autophagy: Biologyand Disease- Clinical Science. Springer, Singapore.
48 Noda, T. and Ohsumi, Y. (1998) Tor, a phosphatidylinositol kinase homologue, controls autophagy in yeast. J. Biol. Chem. 273, 3963-3966.   DOI