Browse > Article
http://dx.doi.org/10.3740/MRSK.2019.29.6.356

Synthesis and Optical Properties of BaSiO3:RE3+ (RE = Sm, Eu) Phosphors  

Cho, Shinho (Division of Materials Science and Engineering, Silla University)
Publication Information
Korean Journal of Materials Research / v.29, no.6, 2019 , pp. 356-362 More about this Journal
Abstract
$BaSiO_3:RE^{3+}$ (RE = Sm or Eu) phosphor powders with different concentrations of activator ions are synthesized using the solid-state reaction method. The effects of the concentration of activator ions on the structural, photoluminescent, and morphological properties of the barium silicate phosphors are investigated. X-ray diffraction data reveals that the crystal structure of all the phosphors, regardless of the type and the concentration of the activator ions, is an orthorhombic system with a main (111) diffraction peak. The grain particles agglomerate together to form larger clusters with increasing concentrations of activator ions. The emission spectra of the $Sm^{3+}$-doped $BaSiO_3$ phosphors under excitation at 406 nm consist of an intense orange band at 604 nm and three weak bands centered at 567, 651, and 711 nm, respectively. As the concentration of $Sm^{3+}$ increases from 1 to 5 mol%, the intensities of all the emission bands gradually increase, reach maxima at 5 mol% of $Sm^{3+}$ ions, and then decrease significantly with further increases in the $Sm^{3+}$ concentration due to the concentration quenching phenomenon. For the $Eu^{3+}$-doped $BaSiO_3$ phosphors, a strong red emission band at 621 nm and several weak bands are observed. The optimal orange and red light emissions of the $BaSiO_3$ phosphors are obtained when the concentrations of $Sm^{3+}$ and $Eu^{3+}$ ions are 5 mol% and 15 mol%, respectively.
Keywords
phosphor; solid-state reaction; photoluminescence;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. Cho, J. Korean Phys. Soc., 74, 707 (2019).   DOI
2 Z. W. Zhang, L. Liu, S. T. Song, J. P. Zhang and D. J. Wang, Curr. Appl. Phys., 15, 248 (2015).   DOI
3 B. Yan and X. Xiao, Nanoscale Res. Lett., 5, 1962 (2010).   DOI
4 A. K. Parchur and R. S. Ningthoujam, RSC Adv., 2, 10859 (2012).   DOI
5 Y. Li and X. Liu, Opt. Mater., 42, 303 (2015).   DOI
6 S. Li, X. Wei, K. Deng, X. Tian, Y. Qin, Y. Chen and M. Yin, Curr. Appl. Phys., 13, 1288 (2013).   DOI
7 J. Liao, L. Liu, H. You, H. Huang and W. You, Optik, 123, 901 (2012).   DOI
8 J. D. Kim and S. Cho, Korean J. Mater. Res., 24, 469 (2014).   DOI
9 M. A. Flores-Gonzalez, G. Ledoux, S. Roux, K. Lebbou, P. Perriat and O. Tillement, J. Solid State Chem., 178, 989 (2005).   DOI
10 H. Liang, Q. Su, Y. Tao, J. Xu and Y. Huang, Mater. Res. Bull., 41, 1468 (2006).   DOI
11 T. Som and B. Karmakar, J. Lumin., 128, 1989 (2008).   DOI
12 C. A. Kodaira, H. F. Brito, O. L. Malta and O. A. Serra, J. Lumin., 101, 11 (2003).   DOI
13 H. Xia, J. Zhang, J. Wang, Q. Nie and H. Somg, Mater. Lett., 53, 277 (2002).   DOI
14 Y. C. Li, Y. H. Chang, Y. F. Lin, Y. S. Chang and Y. J. Lin, J. Alloys Compd., 239, 367 (2007).
15 Z. Yang, Y. Han, Y. Song, Y. Z hao and P. Liu, J. Rare Earth., 30, 1199 (2012).   DOI
16 J. Zhang, Y. Wang, Z. Zhang, Z. Wang and B. Liu, Mater. Lett., 62, 202 (2008).   DOI
17 G. Blasse, Philips Res. Rep., 24, 131 (1969).
18 Z. W. Zhang, X. H. Shen, Y. J, Ren, W. L, Hou, W. G. Zhang and D. J. Wang, Opt. Laser Technol., 56, 348 (2014).   DOI
19 X. Su, B. Yan and H. Huang, J. Alloys Compd., 399, 251 (2005).   DOI
20 S. Li, X. Wei, K. Deng, X. Tian, Y. Qin, Y. Chen and M. Yin, Curr. Appl. Phys., 13, 1288 (2013).   DOI